Encouraging an appropriate representation simplifies training of neural networks

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Acta Universitatis Sapientiae Informatica Pub Date : 2019-11-17 DOI:10.2478/ausi-2020-0007
Krisztián Búza
{"title":"Encouraging an appropriate representation simplifies training of neural networks","authors":"Krisztián Búza","doi":"10.2478/ausi-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract A common assumption about neural networks is that they can learn an appropriate internal representation on their own, see e.g. end-to-end learning. In this work we challenge this assumption. We consider two simple tasks and show that the state-of-the-art training algorithm fails, although the model itself is able to represent an appropriate solution. We will demonstrate that encouraging an appropriate internal representation allows the same model to solve these tasks. While we do not claim that it is impossible to solve these tasks by other means (such as neural networks with more layers), our results illustrate that integration of domain knowledge in form of a desired internal representation may improve the generalization ability of neural networks.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"23 1","pages":"102 - 111"},"PeriodicalIF":0.3000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A common assumption about neural networks is that they can learn an appropriate internal representation on their own, see e.g. end-to-end learning. In this work we challenge this assumption. We consider two simple tasks and show that the state-of-the-art training algorithm fails, although the model itself is able to represent an appropriate solution. We will demonstrate that encouraging an appropriate internal representation allows the same model to solve these tasks. While we do not claim that it is impossible to solve these tasks by other means (such as neural networks with more layers), our results illustrate that integration of domain knowledge in form of a desired internal representation may improve the generalization ability of neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鼓励适当的表示简化了神经网络的训练
关于神经网络的一个常见假设是它们可以自己学习适当的内部表示,例如端到端学习。在这项工作中,我们挑战了这一假设。我们考虑两个简单的任务,并表明最先进的训练算法失败,尽管模型本身能够表示适当的解决方案。我们将演示鼓励适当的内部表示允许相同的模型解决这些任务。虽然我们并没有声称通过其他方式(例如具有更多层的神经网络)不可能解决这些任务,但我们的结果表明,以期望的内部表示形式集成领域知识可能会提高神经网络的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
期刊最新文献
E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles On agglomeration-based rupture degree in networks and a heuristic algorithm On domination in signed graphs Connected certified domination edge critical and stable graphs Eccentric connectivity index in transformation graph Gxy+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1