Dynamic Workflow Engine of Atmospheric Big Remote Sensing Data Processing Powered by Heterogenous Platform for High Performance Computing

Q3 Social Sciences GI_Forum Pub Date : 2021-01-01 DOI:10.1553/giscience2021_01_s112
Shenmin Zhang, Yong Xue, Xiran Zhou
{"title":"Dynamic Workflow Engine of Atmospheric Big Remote Sensing Data Processing Powered by Heterogenous Platform for High Performance Computing","authors":"Shenmin Zhang, Yong Xue, Xiran Zhou","doi":"10.1553/giscience2021_01_s112","DOIUrl":null,"url":null,"abstract":"The development of big remote sensing data related technologies and applications poses a big challenge that massive computing capability is needed to support big data processing. In order to solve this challenge, this paper proposes an architecture of heterogeneous platform of high performance computing, which employs the computer hardware resources to improve the efficiency of big remote sensing data processing by optimizing scheduling strategies and designing high-performance algorithms. Furthermore, the proposed platform can dynamically incorporated with a workflow engine regarding big remote sensing data processing. These algorithms are modular to meet the flexible combination of different processes.","PeriodicalId":29645,"journal":{"name":"GI_Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GI_Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/giscience2021_01_s112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The development of big remote sensing data related technologies and applications poses a big challenge that massive computing capability is needed to support big data processing. In order to solve this challenge, this paper proposes an architecture of heterogeneous platform of high performance computing, which employs the computer hardware resources to improve the efficiency of big remote sensing data processing by optimizing scheduling strategies and designing high-performance algorithms. Furthermore, the proposed platform can dynamically incorporated with a workflow engine regarding big remote sensing data processing. These algorithms are modular to meet the flexible combination of different processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于异构高性能计算平台的大气大遥感数据处理动态工作流引擎
遥感大数据相关技术和应用的发展对大数据处理提出了巨大的挑战,需要海量计算能力的支持。为了解决这一难题,本文提出了一种异构高性能计算平台架构,利用计算机硬件资源,通过优化调度策略和设计高性能算法来提高大遥感数据处理效率。此外,该平台还可以与大数据处理的工作流引擎动态结合。这些算法是模块化的,以满足不同过程的灵活组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GI_Forum
GI_Forum Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
1.10
自引率
0.00%
发文量
9
审稿时长
23 weeks
期刊最新文献
Above-Ground Forest Biomass Estimation using Multispectral LiDAR Data in a Multilayered Coniferous Forest The State of Trajectory Visualization in Notebook Environments Development of a Standardized, Interdisciplinary Approach for Evaluating the Impact of Infrastructural Interventions on Sustainable Mobility A Comparative Study of Geocoder Performance on Unstructured Tweet Locations Application of Object-Based Image Analysis for Detecting and Differentiating between Shallow Landslides and Debris Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1