Elastic Registration of Abdominal MRI Scans and RGB-D Images to Improve Surgical Planning of Breast Reconstruction

Bernhard Schenkenfelder, Wolfgang Fenz, S. Thumfart, G. Ebenhofer, Gernot Stübl, D. Lumenta, G. Reishofer, J. Scharinger
{"title":"Elastic Registration of Abdominal MRI Scans and RGB-D Images to Improve Surgical Planning of Breast Reconstruction","authors":"Bernhard Schenkenfelder, Wolfgang Fenz, S. Thumfart, G. Ebenhofer, Gernot Stübl, D. Lumenta, G. Reishofer, J. Scharinger","doi":"10.23919/ANNSIM52504.2021.9552106","DOIUrl":null,"url":null,"abstract":"MRI and associated contrast agent administration to visualize the vasculature prove valuable for planning surgical interventions and can reduce the operative time by helping to locate internal structures of interest for the operation. However, the visual representation of soft tissues deviates due to differences in body posture, in water and fat content, and in their gravitational displacement. In this paper, we present a novel approach for calculating deformations of abdominal fat tissue and vascular structures in MRI scans. The underlying elastic registration model is based on a current abdominal RGB-D scan as a surface-matching target. We demonstrate the pipeline on Dixon MRI and RGB-D scans acquired from ten patients with a diagnosis of breast cancer and a treatment plan including mastectomy. Results indicate that the proposed system enhances the surgeon's spatial perception of the abdominal vasculature and improves the accuracy of blood vessel locations shown in MRI scans.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"36 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

MRI and associated contrast agent administration to visualize the vasculature prove valuable for planning surgical interventions and can reduce the operative time by helping to locate internal structures of interest for the operation. However, the visual representation of soft tissues deviates due to differences in body posture, in water and fat content, and in their gravitational displacement. In this paper, we present a novel approach for calculating deformations of abdominal fat tissue and vascular structures in MRI scans. The underlying elastic registration model is based on a current abdominal RGB-D scan as a surface-matching target. We demonstrate the pipeline on Dixon MRI and RGB-D scans acquired from ten patients with a diagnosis of breast cancer and a treatment plan including mastectomy. Results indicate that the proposed system enhances the surgeon's spatial perception of the abdominal vasculature and improves the accuracy of blood vessel locations shown in MRI scans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腹部MRI扫描和RGB-D图像的弹性配准改善乳房重建手术计划
MRI和相关的造影剂的使用对规划手术干预是有价值的,并且可以通过帮助定位手术的内部结构来减少手术时间。然而,由于身体姿势、水和脂肪含量以及它们的重力位移的不同,软组织的视觉表现会有所偏差。在本文中,我们提出了一种计算腹部脂肪组织和血管结构在MRI扫描中的变形的新方法。底层的弹性配准模型是基于当前腹部RGB-D扫描作为表面匹配目标。我们展示了Dixon MRI和RGB-D扫描上的管道,这些扫描来自10名诊断为乳腺癌的患者,治疗计划包括乳房切除术。结果表明,该系统增强了外科医生对腹部血管系统的空间感知,并提高了MRI扫描中血管位置的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Tutorial Introduction to Colored Petri Nets Framework for Model-Driven System Design and Engineering Decision of Learning Status Based on Modeling of the Information Measurement of Social Behavioral Tasks in Rhesus Monkeys Towards a Universal Representation of DEVS: A Metamodel-Based Definition of DEVS Formal Specification Evaluating Azure Kinect and Structure Mark-II 3D Surface Scanners for Clinical Chest Wall Deformity Assessment Automatically Combining Conceptual Models Using Semantic and Structural Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1