A reality check on the GARCH-MIDAS volatility models

N. Virk, F. Javed, B. Awartani, S. Hyde
{"title":"A reality check on the GARCH-MIDAS volatility models","authors":"N. Virk, F. Javed, B. Awartani, S. Hyde","doi":"10.1080/1351847x.2023.2217220","DOIUrl":null,"url":null,"abstract":"We employ a battery of model evaluation tests for a broad-set of GARCH-MIDAS models and account for data snooping bias. We document that inferences based on standard tests for GM variance components can be misleading. Our data mining free results show that the gains of macro-variables in forecasting total (long run) variance by GM models are overstated (understated). Estimation of different components of volatility is crucial for designing differentiated investing strategies, risk management plans and pricing of derivative securities. Therefore, researchers and practitioners should be wary of data mining bias, which may contaminate a forecast that may appear statistically validated using robust evaluation tests.","PeriodicalId":22468,"journal":{"name":"The European Journal of Finance","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Journal of Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1351847x.2023.2217220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We employ a battery of model evaluation tests for a broad-set of GARCH-MIDAS models and account for data snooping bias. We document that inferences based on standard tests for GM variance components can be misleading. Our data mining free results show that the gains of macro-variables in forecasting total (long run) variance by GM models are overstated (understated). Estimation of different components of volatility is crucial for designing differentiated investing strategies, risk management plans and pricing of derivative securities. Therefore, researchers and practitioners should be wary of data mining bias, which may contaminate a forecast that may appear statistically validated using robust evaluation tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GARCH-MIDAS波动率模型的现实检验
我们对一组广泛的GARCH-MIDAS模型采用了一系列模型评估测试,并考虑了数据窥探偏差。我们证明,基于GM方差成分的标准测试的推论可能会产生误导。我们的无数据挖掘结果表明,GM模型在预测总(长期)方差方面的宏观变量收益被夸大(低估)了。波动率的不同组成部分的估计是设计差异化的投资策略,风险管理计划和衍生证券定价的关键。因此,研究人员和从业人员应该警惕数据挖掘偏差,这可能会污染使用稳健评估测试进行统计验证的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From text to treasure: the predictive superiority of a FinTech index in stock market returns The effects of trading apps on investment behavior over time Portfolio choice with narrow framing and loss aversion: a simplified approach Measuring ESG risk premia with contingent claims The marginal cost of capital: a portfolio theory perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1