{"title":"A Narrative Sentence Planner and Structurer for Domain Independent, Parameterizable Storytelling","authors":"S. Lukin, M. Walker","doi":"10.5087/DAD.2019.103","DOIUrl":null,"url":null,"abstract":"Storytelling is an integral part of daily life and a key part of how we share information and connect with others. The ability to use Natural Language Generation (NLG) to produce stories that are tailored and adapted to the individual reader could have large impact in many different applications. However, one reason that this has not become a reality to date is the NLG story gap, a disconnect between the plan-type representations that story generation engines produce, and the linguistic representations needed by NLG engines. Here we describe Fabula Tales, a storytelling system supporting both story generation and NLG. With manual annotation of texts from existing stories using an intuitive user interface, Fabula Tales automatically extracts the underlying story representation and its accompanying syntactically grounded representation. Narratological and sentence planning parameters are applied to these structures to generate different versions of the story. We show how our storytelling system can alter the story at the sentence level, as well as the discourse level. We also show that our approach can be applied to different kinds of stories by testing our approach on both Aesop’s Fables and first-person blogs posted on social media. The content and genre of such stories varies widely, supporting our claim that our approach is general and domain independent. We then conduct several user studies to evaluate the generated story variations and show that Fabula Tales’ automatically produced variations are perceived as more immediate, interesting, and correct, and are preferred to a baseline generation system that does not use narrative parameters.","PeriodicalId":37604,"journal":{"name":"Dialogue and Discourse","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogue and Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5087/DAD.2019.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 8
Abstract
Storytelling is an integral part of daily life and a key part of how we share information and connect with others. The ability to use Natural Language Generation (NLG) to produce stories that are tailored and adapted to the individual reader could have large impact in many different applications. However, one reason that this has not become a reality to date is the NLG story gap, a disconnect between the plan-type representations that story generation engines produce, and the linguistic representations needed by NLG engines. Here we describe Fabula Tales, a storytelling system supporting both story generation and NLG. With manual annotation of texts from existing stories using an intuitive user interface, Fabula Tales automatically extracts the underlying story representation and its accompanying syntactically grounded representation. Narratological and sentence planning parameters are applied to these structures to generate different versions of the story. We show how our storytelling system can alter the story at the sentence level, as well as the discourse level. We also show that our approach can be applied to different kinds of stories by testing our approach on both Aesop’s Fables and first-person blogs posted on social media. The content and genre of such stories varies widely, supporting our claim that our approach is general and domain independent. We then conduct several user studies to evaluate the generated story variations and show that Fabula Tales’ automatically produced variations are perceived as more immediate, interesting, and correct, and are preferred to a baseline generation system that does not use narrative parameters.
期刊介绍:
D&D seeks previously unpublished, high quality articles on the analysis of discourse and dialogue that contain -experimental and/or theoretical studies related to the construction, representation, and maintenance of (linguistic) context -linguistic analysis of phenomena characteristic of discourse and/or dialogue (including, but not limited to: reference and anaphora, presupposition and accommodation, topicality and salience, implicature, ---discourse structure and rhetorical relations, discourse markers and particles, the semantics and -pragmatics of dialogue acts, questions, imperatives, non-sentential utterances, intonation, and meta--communicative phenomena such as repair and grounding) -experimental and/or theoretical studies of agents'' information states and their dynamics in conversational interaction -new analytical frameworks that advance theoretical studies of discourse and dialogue -research on systems performing coreference resolution, discourse structure parsing, event and temporal -structure, and reference resolution in multimodal communication -experimental and/or theoretical results yielding new insight into non-linguistic interaction in -communication -work on natural language understanding (including spoken language understanding), dialogue management, -reasoning, and natural language generation (including text-to-speech) in dialogue systems -work related to the design and engineering of dialogue systems (including, but not limited to: -evaluation, usability design and testing, rapid application deployment, embodied agents, affect detection, -mixed-initiative, adaptation, and user modeling). -extremely well-written surveys of existing work. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers on discourse and dialogue and its associated fields, including computer scientists, linguists, psychologists, philosophers, roboticists, sociologists.