Adaptive Probabilistic Word Embedding

Shuangyin Li, Yu Zhang, Rong Pan, Kaixiang Mo
{"title":"Adaptive Probabilistic Word Embedding","authors":"Shuangyin Li, Yu Zhang, Rong Pan, Kaixiang Mo","doi":"10.1145/3366423.3380147","DOIUrl":null,"url":null,"abstract":"Word embeddings have been widely used and proven to be effective in many natural language processing and text modeling tasks. It is obvious that one ambiguous word could have very different semantics in various contexts, which is called polysemy. Most existing works aim at generating only one single embedding for each word while a few works build a limited number of embeddings to present different meanings for each word. However, it is hard to determine the exact number of senses for each word as the word meaning is dependent on contexts. To address this problem, we propose a novel Adaptive Probabilistic Word Embedding (APWE) model, where the word polysemy is defined over a latent interpretable semantic space. Specifically, at first each word is represented by an embedding in the latent semantic space and then based on the proposed APWE model, the word embedding can be adaptively adjusted and updated based on different contexts to obtain the tailored word embedding. Empirical comparisons with state-of-the-art models demonstrate the superiority of the proposed APWE model.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Word embeddings have been widely used and proven to be effective in many natural language processing and text modeling tasks. It is obvious that one ambiguous word could have very different semantics in various contexts, which is called polysemy. Most existing works aim at generating only one single embedding for each word while a few works build a limited number of embeddings to present different meanings for each word. However, it is hard to determine the exact number of senses for each word as the word meaning is dependent on contexts. To address this problem, we propose a novel Adaptive Probabilistic Word Embedding (APWE) model, where the word polysemy is defined over a latent interpretable semantic space. Specifically, at first each word is represented by an embedding in the latent semantic space and then based on the proposed APWE model, the word embedding can be adaptively adjusted and updated based on different contexts to obtain the tailored word embedding. Empirical comparisons with state-of-the-art models demonstrate the superiority of the proposed APWE model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应概率词嵌入
词嵌入在许多自然语言处理和文本建模任务中得到了广泛的应用,并被证明是有效的。很明显,一个有歧义的词在不同的语境中可能有非常不同的语义,这被称为一词多义。大多数现有的作品旨在为每个词只生成一个嵌入,而少数作品则构建有限数量的嵌入来表示每个词的不同含义。然而,很难确定每个单词的确切数量,因为单词的含义取决于上下文。为了解决这个问题,我们提出了一种新的自适应概率词嵌入(APWE)模型,该模型在潜在的可解释语义空间上定义词的多义性。具体而言,首先在潜在语义空间中对每个词进行嵌入,然后基于所提出的APWE模型,可以根据不同的上下文自适应调整和更新词嵌入,从而获得量身定制的词嵌入。与最先进的模型进行了实证比较,证明了所提出的APWE模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1