V. Petrauskas, R. Jasinevicius, E. Kazanavicius, Zygimantas Meskauskas
{"title":"Concept of a System Using a Dynamic SWOT Analysis Network for Fuzzy Control of Risk in Complex Environments","authors":"V. Petrauskas, R. Jasinevicius, E. Kazanavicius, Zygimantas Meskauskas","doi":"10.11648/J.MCS.20200502.11","DOIUrl":null,"url":null,"abstract":"The paper advocates a new concept for risk control that makes up one organic closed loop feedback system, with the following stages: 1) the evaluation of the positive and negative features of situation under investigation through strengths, weaknesses, opportunities, and threats (SWOT) analysis, 2) the determination of the level of fuzzy risk concealed in this situation (using RISK evaluation), and 3) the proposal of leverage, recommendations, or actions (through LEVERAGE aggregation) enabling the improvement of target performance. Useful fundamental approaches, definitions, and particularities of this concept concerning SWOT, RISK and LEVERAGES are examined, and for the first time the network type called here the fuzzy SWOT map (FSM) is introduced. This newly proposed instrument appeared as a result of a natural extension of fuzzy cognitive maps paradigm enhanced by dynamic computing with words (CWW) elements and possibilities to use the explainable artificial intelligence (XAI) in the form of fuzzy inference rules. The concept serves for development of functional organization of control systems of complex and dynamically interacting projects or situations and for implementation of adequate set of tools satisfying the concrete system’s requirements. The results of conceptual modeling and the confirmation of the vitality of the approach are presented based on the simplified example of a risk-control system case covering three interacting projects in a complex environment of city development.","PeriodicalId":45105,"journal":{"name":"Mathematics in Computer Science","volume":"6 1","pages":"42"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MCS.20200502.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
The paper advocates a new concept for risk control that makes up one organic closed loop feedback system, with the following stages: 1) the evaluation of the positive and negative features of situation under investigation through strengths, weaknesses, opportunities, and threats (SWOT) analysis, 2) the determination of the level of fuzzy risk concealed in this situation (using RISK evaluation), and 3) the proposal of leverage, recommendations, or actions (through LEVERAGE aggregation) enabling the improvement of target performance. Useful fundamental approaches, definitions, and particularities of this concept concerning SWOT, RISK and LEVERAGES are examined, and for the first time the network type called here the fuzzy SWOT map (FSM) is introduced. This newly proposed instrument appeared as a result of a natural extension of fuzzy cognitive maps paradigm enhanced by dynamic computing with words (CWW) elements and possibilities to use the explainable artificial intelligence (XAI) in the form of fuzzy inference rules. The concept serves for development of functional organization of control systems of complex and dynamically interacting projects or situations and for implementation of adequate set of tools satisfying the concrete system’s requirements. The results of conceptual modeling and the confirmation of the vitality of the approach are presented based on the simplified example of a risk-control system case covering three interacting projects in a complex environment of city development.
期刊介绍:
Mathematics in Computer Science publishes high-quality original research papers on the development of theories and methods for computer and information sciences, the design, implementation, and analysis of algorithms and software tools for mathematical computation and reasoning, and the integration of mathematics and computer science for scientific and engineering applications. Insightful survey articles may be submitted for publication by invitation. As one of its distinct features, the journal publishes mainly special issues on carefully selected topics, reflecting the trends of research and development in the broad area of mathematics in computer science. Submission of proposals for special issues is welcome.