A deep learning approach for spatial error correction of numerical seasonal weather prediction simulation data

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2023-02-13 DOI:10.1080/20964471.2023.2172820
S. Karozis, I. Klampanos, A. Sfetsos, D. Vlachogiannis
{"title":"A deep learning approach for spatial error correction of numerical seasonal weather prediction simulation data","authors":"S. Karozis, I. Klampanos, A. Sfetsos, D. Vlachogiannis","doi":"10.1080/20964471.2023.2172820","DOIUrl":null,"url":null,"abstract":"ABSTRACT Numerical Weather Prediction (NWP) simulations produce meteorological data in various spatial and temporal scales, depending on the application requirements. In the current study, a deep learning approach, based on convolutional autoencoders, is explored to effectively correct the error of the NWP simulation. An undercomplete convolutional autoencoder (CAE) is applied as part of the dynamic error correction of NWP data. This work is an attempt to improve the seasonal forecast (3–6 months ahead) data accuracy for Greece using a global reanalysis dataset (that incorporates observations, satellite imaging, etc.) of higher spatial resolution. More specifically, the publically available Meteo France Seasonal (Copernicus platform) and the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) (NOAA) datasets are utilized. In addition, external information is used as evidence transfer, concerning the time conditions (month, day, and season) and the simulation characteristics (initialization of simulation). It is found that convolutional autoencoders help to improve the resolution of the seasonal data and successfully reduce the error of the NWP data for 6-months ahead forecasting. Interestingly, the month evidence yields the best agreement indicating a seasonal dependence of the performance.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"3 1 1","pages":"231 - 250"},"PeriodicalIF":4.2000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2023.2172820","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT Numerical Weather Prediction (NWP) simulations produce meteorological data in various spatial and temporal scales, depending on the application requirements. In the current study, a deep learning approach, based on convolutional autoencoders, is explored to effectively correct the error of the NWP simulation. An undercomplete convolutional autoencoder (CAE) is applied as part of the dynamic error correction of NWP data. This work is an attempt to improve the seasonal forecast (3–6 months ahead) data accuracy for Greece using a global reanalysis dataset (that incorporates observations, satellite imaging, etc.) of higher spatial resolution. More specifically, the publically available Meteo France Seasonal (Copernicus platform) and the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) (NOAA) datasets are utilized. In addition, external information is used as evidence transfer, concerning the time conditions (month, day, and season) and the simulation characteristics (initialization of simulation). It is found that convolutional autoencoders help to improve the resolution of the seasonal data and successfully reduce the error of the NWP data for 6-months ahead forecasting. Interestingly, the month evidence yields the best agreement indicating a seasonal dependence of the performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
季节天气数值预报模拟数据空间误差校正的深度学习方法
数值天气预报(NWP)模拟可根据应用需求生成不同时空尺度的气象数据。在本研究中,探索了一种基于卷积自编码器的深度学习方法,以有效地纠正NWP仿真的误差。采用欠完全卷积自编码器(CAE)对NWP数据进行动态纠错。这项工作是利用更高空间分辨率的全球再分析数据集(包括观测、卫星成像等)提高希腊季节性预报(提前3-6个月)数据准确性的尝试。更具体地说,利用了公开的法国气象季节(哥白尼平台)和国家环境预测中心(NCEP)最终分析(FNL) (NOAA)数据集。此外,利用外部信息作为证据传递,包括时间条件(月、日、季)和仿真特征(仿真初始化)。研究发现,卷积自编码器有助于提高季节数据的分辨率,并成功地减少了NWP数据对6个月前预测的误差。有趣的是,月度数据的一致性最好,表明了业绩的季节性依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1