Surface-modified WE43 magnesium alloys for reduced degradation and superior biocompatibility.

In vitro models Pub Date : 2022-05-02 eCollection Date: 2022-06-01 DOI:10.1007/s44164-022-00016-x
Vignesh K Manivasagam, Magesh Sankar, Caterina Bartomeu Garcia, Jithin Vishnu, Kaushik Chatterjee, Satyam Suwas, Geetha Manivasagam, Thomas J Webster
{"title":"Surface-modified WE43 magnesium alloys for reduced degradation and superior biocompatibility.","authors":"Vignesh K Manivasagam, Magesh Sankar, Caterina Bartomeu Garcia, Jithin Vishnu, Kaushik Chatterjee, Satyam Suwas, Geetha Manivasagam, Thomas J Webster","doi":"10.1007/s44164-022-00016-x","DOIUrl":null,"url":null,"abstract":"<p><p>WE43 magnesium alloy was modified using surface mechanical attrition treatment (SMAT) and characterized to evaluate the influence of sub-micron surface modification on degradation rate and in vitro behavior. Modified surface was characterized for wettability, hardness, roughness, degradation rate, in vitro biocompatibility, and antibacterial activity as per the ASTM standards. The treated substrates proved to have a significant decrease in the degradation profile by creating micro pockets of oxidation channels and reducing the total delamination in comparison to the conventional heterogeneous oxide layer formed on the untreated substrate surface. Biocompatibility studies showed that this modification did not induce any toxicity to human fetal osteoblast (hFOB) cells as demonstrated by cell proliferation and enhanced calcium deposition. In fact, results showed that between the 7<sup>th</sup> day and 14<sup>th</sup> day of culture, there was an eight time increase in calcium deposition for the surface-treated magnesium alloy. Bacterial adhesion and toxicity studies were carried out using <i>Staphylococcus aureus</i> and methicillin-resistant <i>Staphylococcus aureus</i>. Bacterial toxicity studies showed that both treated and control samples were toxic to the bacteria with more dead cells. Hence, this treatment has developed a highly potential orthopedic surface with decreased biodegradability rate of WE43 and simultaneously enhanced antibacterial properties with good osteoblast cell growth and calcium deposition for faster in vitro bone growth.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"33 1","pages":"273-288"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-022-00016-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

WE43 magnesium alloy was modified using surface mechanical attrition treatment (SMAT) and characterized to evaluate the influence of sub-micron surface modification on degradation rate and in vitro behavior. Modified surface was characterized for wettability, hardness, roughness, degradation rate, in vitro biocompatibility, and antibacterial activity as per the ASTM standards. The treated substrates proved to have a significant decrease in the degradation profile by creating micro pockets of oxidation channels and reducing the total delamination in comparison to the conventional heterogeneous oxide layer formed on the untreated substrate surface. Biocompatibility studies showed that this modification did not induce any toxicity to human fetal osteoblast (hFOB) cells as demonstrated by cell proliferation and enhanced calcium deposition. In fact, results showed that between the 7th day and 14th day of culture, there was an eight time increase in calcium deposition for the surface-treated magnesium alloy. Bacterial adhesion and toxicity studies were carried out using Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Bacterial toxicity studies showed that both treated and control samples were toxic to the bacteria with more dead cells. Hence, this treatment has developed a highly potential orthopedic surface with decreased biodegradability rate of WE43 and simultaneously enhanced antibacterial properties with good osteoblast cell growth and calcium deposition for faster in vitro bone growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面改性WE43镁合金,减少降解和优越的生物相容性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines. Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation. Hybrid additive manufacturing for Zn-Mg casting for biomedical application. Development and characterisation of a novel complex triple cell culture model of the human alveolar epithelial barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1