Estimation and Inference by Compact Coding

C. S. Wallace, P. Freeman
{"title":"Estimation and Inference by Compact Coding","authors":"C. S. Wallace, P. Freeman","doi":"10.1111/J.2517-6161.1987.TB01695.X","DOIUrl":null,"url":null,"abstract":"SUMMARY The systematic variation within a set of data, as represented by a usual statistical model, may be used to encode the data in a more compact form than would be possible if they were considered to be purely random. The encoded form has two parts. The first states the inferred estimates of the unknown parameters in the model, the second states the data using an optimal code based on the data probability distribution implied by those parameter estimates. Choosing the model and the estimates that give the most compact coding leads to an interesting general inference procedure. In its strict form it has great generality and several nice properties but is computationally infeasible. An approximate form is developed and its relation to other methods is explored.","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"38 1","pages":"240-252"},"PeriodicalIF":0.0000,"publicationDate":"1987-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"586","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1987.TB01695.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 586

Abstract

SUMMARY The systematic variation within a set of data, as represented by a usual statistical model, may be used to encode the data in a more compact form than would be possible if they were considered to be purely random. The encoded form has two parts. The first states the inferred estimates of the unknown parameters in the model, the second states the data using an optimal code based on the data probability distribution implied by those parameter estimates. Choosing the model and the estimates that give the most compact coding leads to an interesting general inference procedure. In its strict form it has great generality and several nice properties but is computationally infeasible. An approximate form is developed and its relation to other methods is explored.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩编码的估计与推理
通常的统计模型所表示的一组数据中的系统变化,可用于将数据编码为比纯随机数据更紧凑的形式。编码的形式有两个部分。第一个声明模型中未知参数的推断估计,第二个使用基于这些参数估计所隐含的数据概率分布的最优代码来声明数据。选择给出最紧凑编码的模型和估计会导致一个有趣的一般推理过程。在严格的形式下,它具有很好的通用性和几个很好的性质,但在计算上是不可行的。提出了一种近似形式,并探讨了它与其他方法的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1