ActivePointers: A Case for Software Address Translation on GPUs

Sagi Shahar, Shai Bergman, M. Silberstein
{"title":"ActivePointers: A Case for Software Address Translation on GPUs","authors":"Sagi Shahar, Shai Bergman, M. Silberstein","doi":"10.1145/3007787.3001200","DOIUrl":null,"url":null,"abstract":"Modern discrete GPUs have been the processors of choice for accelerating compute-intensive applications, but using them in large-scale data processing is extremely challenging. Unfortunately, they do not provide important I/O abstractions long established in the CPU context, such as memory mapped files, which shield programmers from the complexity of buffer and I/O device management. However, implementing these abstractions on GPUs poses a problem: the limited GPU virtual memory system provides no address space management and page fault handling mechanisms to GPU developers, and does not allow modifications to memory mappings for running GPU programs. We implement ActivePointers, a software address translation layer and paging system that introduces native support for page faults and virtual address space management to GPU programs, and enables the implementation of fully functional memory mapped files on commodity GPUs. Files mapped into GPU memory are accessed using active pointers, which behave like regular pointers but access the GPU page cache under the hood, and trigger page faults which are handled on the GPU. We design and evaluate a number of novel mechanisms, including a translation cache in hardware registers and translation aggregation for deadlock-free page fault handling of threads in a single warp. We extensively evaluate ActivePointers on commodity NVIDIA GPUs using microbenchmarks, and also implement a complex image processing application that constructs a photo collage from a subset of 10 million images stored in a 40GB file. The GPU implementation maps the entire file into GPU memory and accesses it via active pointers. The use of active pointers adds only up to 1% to the application's runtime, while enabling speedups of up to 3.9× over a combined CPU+GPU implementation and 2.6× over a 12-core CPU-only implementation which uses AVX vector instructions.","PeriodicalId":6634,"journal":{"name":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","volume":"33 1","pages":"596-608"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007787.3001200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Modern discrete GPUs have been the processors of choice for accelerating compute-intensive applications, but using them in large-scale data processing is extremely challenging. Unfortunately, they do not provide important I/O abstractions long established in the CPU context, such as memory mapped files, which shield programmers from the complexity of buffer and I/O device management. However, implementing these abstractions on GPUs poses a problem: the limited GPU virtual memory system provides no address space management and page fault handling mechanisms to GPU developers, and does not allow modifications to memory mappings for running GPU programs. We implement ActivePointers, a software address translation layer and paging system that introduces native support for page faults and virtual address space management to GPU programs, and enables the implementation of fully functional memory mapped files on commodity GPUs. Files mapped into GPU memory are accessed using active pointers, which behave like regular pointers but access the GPU page cache under the hood, and trigger page faults which are handled on the GPU. We design and evaluate a number of novel mechanisms, including a translation cache in hardware registers and translation aggregation for deadlock-free page fault handling of threads in a single warp. We extensively evaluate ActivePointers on commodity NVIDIA GPUs using microbenchmarks, and also implement a complex image processing application that constructs a photo collage from a subset of 10 million images stored in a 40GB file. The GPU implementation maps the entire file into GPU memory and accesses it via active pointers. The use of active pointers adds only up to 1% to the application's runtime, while enabling speedups of up to 3.9× over a combined CPU+GPU implementation and 2.6× over a 12-core CPU-only implementation which uses AVX vector instructions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
activepointer:一个在gpu上进行软件地址转换的案例
现代离散gpu已经成为加速计算密集型应用程序的首选处理器,但在大规模数据处理中使用它们是极具挑战性的。不幸的是,它们没有提供在CPU上下文中建立的重要的I/O抽象,例如内存映射文件,它使程序员避免了缓冲区和I/O设备管理的复杂性。然而,在GPU上实现这些抽象带来了一个问题:有限的GPU虚拟内存系统没有为GPU开发人员提供地址空间管理和页面错误处理机制,并且不允许修改运行GPU程序的内存映射。我们实现了ActivePointers,这是一个软件地址转换层和分页系统,它为GPU程序引入了对页面错误和虚拟地址空间管理的本地支持,并能够在商品GPU上实现全功能的内存映射文件。映射到GPU内存中的文件是使用活动指针访问的,它的行为像常规指针一样,但是访问GPU页面缓存的底层,并触发在GPU上处理的页面错误。我们设计和评估了一些新的机制,包括硬件寄存器中的翻译缓存和翻译聚合,用于在单个warp中处理线程的无死锁页面错误。我们使用微基准测试对NVIDIA商用gpu上的activepointer进行了广泛的评估,并且还实现了一个复杂的图像处理应用程序,该应用程序从存储在40GB文件中的1000万张图像子集中构建照片拼贴。GPU实现将整个文件映射到GPU内存并通过活动指针访问它。活动指针的使用只增加了应用程序运行时的1%,而在CPU+GPU的组合实现中,速度提高了3.9倍,在使用AVX矢量指令的12核CPU实现中,速度提高了2.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RelaxFault Memory Repair Boosting Access Parallelism to PCM-Based Main Memory Bit-Plane Compression: Transforming Data for Better Compression in Many-Core Architectures Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Energy Efficient Architecture for Graph Analytics Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1