Madeleine Cockerill, A. Bassom, Andrew J. Willmott
{"title":"Modelling topographic waves in a polar basin","authors":"Madeleine Cockerill, A. Bassom, Andrew J. Willmott","doi":"10.1080/03091929.2021.1954631","DOIUrl":null,"url":null,"abstract":"This study is concerned with properties of freely propagating barotropic Rossby waves in a circular polar cap, a prototype model for the Arctic Ocean. The linearised shallow-water equations are used to derive an amplitude equation for the waves in which full spherical geometry is retained. Almost by definition, polar basin dynamics are confined to regions of limited latitudinal extent and this provides a natural small scale which can underpin a rational asymptotic analysis of the amplitude equation. The coefficients of this equation depend on the topography of the basin and, as a simple model of the Arctic basin, we assume that the basin interior is characterised by a constant depth, surrounded by a continental shelf-slope the depth of which has algebraic dependence on co-latitude. Isobaths are therefore a family of concentric circles with centre at the pole. On the shelf and slope regions the leading order amplitude equation is of straightforward Euler type. Asymptotic values of the wave frequencies are derived and these are compared to values computed directly from the full amplitude equation. It is shown that the analytic results are in very good accord with the numerical predictions. Further simulations show that the properties of the waves are not particularly sensitive to the precise details of the underlying topography; this is reassuring as it is difficult to faithfully represent the shelf topography using simple mathematical functions.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"35 1","pages":"1 - 19"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2021.1954631","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study is concerned with properties of freely propagating barotropic Rossby waves in a circular polar cap, a prototype model for the Arctic Ocean. The linearised shallow-water equations are used to derive an amplitude equation for the waves in which full spherical geometry is retained. Almost by definition, polar basin dynamics are confined to regions of limited latitudinal extent and this provides a natural small scale which can underpin a rational asymptotic analysis of the amplitude equation. The coefficients of this equation depend on the topography of the basin and, as a simple model of the Arctic basin, we assume that the basin interior is characterised by a constant depth, surrounded by a continental shelf-slope the depth of which has algebraic dependence on co-latitude. Isobaths are therefore a family of concentric circles with centre at the pole. On the shelf and slope regions the leading order amplitude equation is of straightforward Euler type. Asymptotic values of the wave frequencies are derived and these are compared to values computed directly from the full amplitude equation. It is shown that the analytic results are in very good accord with the numerical predictions. Further simulations show that the properties of the waves are not particularly sensitive to the precise details of the underlying topography; this is reassuring as it is difficult to faithfully represent the shelf topography using simple mathematical functions.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.