Historic Moments Discovery in Sequence Data

Ran Bai, W. Hon, Eric Lo, Zhian He, Kenny Q. Zhu
{"title":"Historic Moments Discovery in Sequence Data","authors":"Ran Bai, W. Hon, Eric Lo, Zhian He, Kenny Q. Zhu","doi":"10.1145/3276975","DOIUrl":null,"url":null,"abstract":"Many emerging applications are based on finding interesting subsequences from sequence data. Finding “prominent streaks,” a set of the longest contiguous subsequences with values all above (or below) a certain threshold, from sequence data is one of that kind that receives much attention. Motivated from real applications, we observe that prominent streaks alone are not insightful enough but require the discovery of something we coined as “historic moments” as companions. In this article, we present an algorithm to efficiently compute historic moments from sequence data. The algorithm is incremental and space optimal, meaning that when facing new data arrival, it is able to efficiently refresh the results by keeping minimal information. Case studies show that historic moments can significantly improve the insights offered by prominent streaks alone. Furthermore, experiments show that our algorithm can outperform the baseline in both time and space.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"25 1","pages":"1 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many emerging applications are based on finding interesting subsequences from sequence data. Finding “prominent streaks,” a set of the longest contiguous subsequences with values all above (or below) a certain threshold, from sequence data is one of that kind that receives much attention. Motivated from real applications, we observe that prominent streaks alone are not insightful enough but require the discovery of something we coined as “historic moments” as companions. In this article, we present an algorithm to efficiently compute historic moments from sequence data. The algorithm is incremental and space optimal, meaning that when facing new data arrival, it is able to efficiently refresh the results by keeping minimal information. Case studies show that historic moments can significantly improve the insights offered by prominent streaks alone. Furthermore, experiments show that our algorithm can outperform the baseline in both time and space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序列数据中的历史性时刻发现
许多新兴的应用都是基于从序列数据中找到有趣的子序列。从序列数据中寻找“突出的条纹”,即一组值均高于(或低于)某个阈值的最长连续子序列,是受到很多关注的一类。在实际应用的激励下,我们观察到,仅仅突出的条纹是不够深刻的,而是需要发现一些我们称之为“历史时刻”的东西作为伴侣。本文提出了一种从序列数据中高效计算历史矩的算法。该算法是增量和空间最优的,这意味着当面对新数据到达时,它能够通过保留最小的信息来有效地刷新结果。案例研究表明,历史时刻可以显著提高仅凭突出条纹提供的洞察力。此外,实验表明,该算法在时间和空间上都优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Finding Rank Regret Representatives Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration Persistent Summaries Influence Maximization Revisited: Efficient Sampling with Bound Tightened The Space-Efficient Core of Vadalog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1