A Reliability-Based Condition Assessment of Structural Concrete Using Synthetic Aperture Radar Imaging Techniques

IF 1 4区 材料科学 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Research in Nondestructive Evaluation Pub Date : 2020-04-06 DOI:10.1080/09349847.2020.1745341
Jones Owusu Twumasi, P. Destefano, J. Christian
{"title":"A Reliability-Based Condition Assessment of Structural Concrete Using Synthetic Aperture Radar Imaging Techniques","authors":"Jones Owusu Twumasi, P. Destefano, J. Christian","doi":"10.1080/09349847.2020.1745341","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper proposes a probabilistic framework for assessing the condition of structural concrete with respect to moisture contained within cured concrete using a 10 GHz synthetic aperture radar (SAR) imaging system. Functional relationships between integrated SAR amplitude (SAR image index) and moisture content have been developed in previous studies utilizing experimental data collected in a controlled laboratory environment. These studies have shown that the integrated SAR amplitude (SAR image index) increases exponentially with an increase in moisture content at a given water-to-cement (w/c) ratio. In this study, a reliability model is developed using the integrated SAR amplitude and moisture content relationships from an experimental study which included concrete specimens with five different w/c ratios in addition to variations of critical functional parameters and Monte Carlo simulation techniques. The reliability model of moisture content detected with synthetic aperture radar in this study follows a normal distribution. An illustrative example is presented to demonstrate the reliability-based methods of measuring in-place moisture content using an integrated SAR amplitude. The findings from this study emphasize the need to consider the variation of parameters affecting nondestructive SAR imaging results for the purposes of diagnosing moisture content of aged structural concrete.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"54 1","pages":"216 - 235"},"PeriodicalIF":1.0000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2020.1745341","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This paper proposes a probabilistic framework for assessing the condition of structural concrete with respect to moisture contained within cured concrete using a 10 GHz synthetic aperture radar (SAR) imaging system. Functional relationships between integrated SAR amplitude (SAR image index) and moisture content have been developed in previous studies utilizing experimental data collected in a controlled laboratory environment. These studies have shown that the integrated SAR amplitude (SAR image index) increases exponentially with an increase in moisture content at a given water-to-cement (w/c) ratio. In this study, a reliability model is developed using the integrated SAR amplitude and moisture content relationships from an experimental study which included concrete specimens with five different w/c ratios in addition to variations of critical functional parameters and Monte Carlo simulation techniques. The reliability model of moisture content detected with synthetic aperture radar in this study follows a normal distribution. An illustrative example is presented to demonstrate the reliability-based methods of measuring in-place moisture content using an integrated SAR amplitude. The findings from this study emphasize the need to consider the variation of parameters affecting nondestructive SAR imaging results for the purposes of diagnosing moisture content of aged structural concrete.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于合成孔径雷达成像技术的结构混凝土可靠性状态评估
摘要:本文提出了一个概率框架,用于使用10 GHz合成孔径雷达(SAR)成像系统评估结构混凝土中含有水分的状况。以前的研究利用在受控实验室环境中收集的实验数据,建立了SAR综合幅值(SAR图像指数)与水分含量之间的函数关系。这些研究表明,在给定的水灰比(w/c)下,随着含水率的增加,综合SAR振幅(SAR图像指数)呈指数增长。在本研究中,利用综合SAR振幅和含水率关系建立了一个可靠性模型,该模型来自一项实验研究,该研究包括具有五种不同w/c比的混凝土试件,以及关键功能参数的变化和蒙特卡罗模拟技术。本研究中合成孔径雷达测湿的可靠性模型服从正态分布。给出了一个示例,以演示基于可靠性的方法,测量就地水分含量利用一个集成的SAR振幅。本研究的结果强调,为了诊断老化结构混凝土的含水率,需要考虑影响无损SAR成像结果的参数变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in Nondestructive Evaluation
Research in Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
2.30
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement. Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.
期刊最新文献
Comparison of Skin Effects in Ferromagnetic and Nonferromagnetic Metals in Eddy Current Testing Bridging the Gap: Correlating Ultrasonically Quantified BVID with the Compressive Strength of CFRP Composites Nondestructive Evaluation and Residual Property Assessment of Impacted Nylon/carbon-Fiber Additively Manufactured FFF Components Using Four-Point Bend and Ultrasonic Testing A Novel Image-Based Long-Range Continuously Scanning Laser Doppler Vibrometer for Operational Modal Analysis of a Rotating Structure A Methodology for Structural Damage Detection Adding Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1