Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Advances in Materials Science Pub Date : 2023-03-01 DOI:10.2478/adms-2023-0003
Maroua Layachi, A. Khechai, A. Ghrieb, Safa Layachi
{"title":"Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model","authors":"Maroua Layachi, A. Khechai, A. Ghrieb, Safa Layachi","doi":"10.2478/adms-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated based on the classical lamination theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These criterions are implemented within the finite element code to predict the different failure damages and responses of laminated beams from the initial loading to the final failure. The numerical results obtained using the present element compare favorably with those given by the analytic approaches. It is observed that the numerical results are very close to the analytical results, which demonstrates the accuracy of the present element. Finally, several parameters, such as fiber orientations, stacking sequences, and boundary conditions, are considered to determine and understand their effects on the strength of these laminated beams.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/adms-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated based on the classical lamination theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These criterions are implemented within the finite element code to predict the different failure damages and responses of laminated beams from the initial loading to the final failure. The numerical results obtained using the present element compare favorably with those given by the analytic approaches. It is observed that the numerical results are very close to the analytical results, which demonstrates the accuracy of the present element. Finally, several parameters, such as fiber orientations, stacking sequences, and boundary conditions, are considered to determine and understand their effects on the strength of these laminated beams.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于精细有限元模型的层合梁数值破坏分析
摘要本文对受弯曲静载荷作用的层合组合梁进行了研究,以确定其破坏机制和第一层破坏荷载。FPF分析是使用一个改进的矩形板单元进行的。本单元是基于经典层合理论(CLT)建立的,用于计算面内应力。为了实现这一目标,使用了几种破坏准则,包括Tsai-Wu, Tsai-Hill, Hashin和最大应力准则来预测破坏机制。这些准则是在有限元规范中实现的,用于预测层合梁从初始加载到最终破坏的不同破坏损伤和响应。用该单元得到的数值结果与解析方法得到的结果比较满意。数值结果与解析结果非常接近,证明了该单元的准确性。最后,考虑了几个参数,如纤维取向、堆叠顺序和边界条件,以确定和理解它们对这些层合梁强度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Materials Science
Advances in Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
7.70%
发文量
0
期刊最新文献
Mechanical Properties of Titanium Grade 1 After Laser Shock Wave Treatment Leading-Edge Polymer/Carbonaceous Nano-Reinforcement Nanocomposites—Opportunities for Space Sector The Effects of ArC Voltage and Shielding Gas Type on the Microstructure of Wire ArC Additively Manufactured 2209 Duplex Stainless Steel Mechanical and Corrosion Properties of Friction Stir Welded and Tungsten Inert Gas Welded Phosphor Bronze Numerical and Experimental Analysis of the Forging of a Bimetallic Crosshead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1