LTMA: Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results

Mennatallah El-Assady, F. Sperrle, R. Sevastjanova, M. Sedlmair, D. Keim
{"title":"LTMA: Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results","authors":"Mennatallah El-Assady, F. Sperrle, R. Sevastjanova, M. Sedlmair, D. Keim","doi":"10.1109/BDVA.2018.8534018","DOIUrl":null,"url":null,"abstract":"We present LTMA, a Layered Topic Matching approach for the unsupervised comparative analysis of topic modeling results. Due to the vast number of available modeling algorithms, an efficient and effective comparison of their results is detrimental to a data- and task-driven selection of a model. LTMA automates this comparative analysis by providing topic matching based on two layers (document-overlap and keyword-similarity), creating a novel topic-match data structure. This data structure builds a basis for model exploration and optimization, thus, allowing for an efficient evaluation of their performance in the context of a given type of text data and task. This is especially important for text types where an annotated gold standard dataset is not readily available and, therefore, quantitative evaluation methods are not applicable. We confirm the usefulness of our technique based on three use cases, namely: (1) the automatic comparative evaluation of topic models, (2) the visual exploration of topic modeling differences, and (3) the optimization of topic modeling results through combining matches.","PeriodicalId":92742,"journal":{"name":"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)","volume":"27 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BDVA.2018.8534018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present LTMA, a Layered Topic Matching approach for the unsupervised comparative analysis of topic modeling results. Due to the vast number of available modeling algorithms, an efficient and effective comparison of their results is detrimental to a data- and task-driven selection of a model. LTMA automates this comparative analysis by providing topic matching based on two layers (document-overlap and keyword-similarity), creating a novel topic-match data structure. This data structure builds a basis for model exploration and optimization, thus, allowing for an efficient evaluation of their performance in the context of a given type of text data and task. This is especially important for text types where an annotated gold standard dataset is not readily available and, therefore, quantitative evaluation methods are not applicable. We confirm the usefulness of our technique based on three use cases, namely: (1) the automatic comparative evaluation of topic models, (2) the visual exploration of topic modeling differences, and (3) the optimization of topic modeling results through combining matches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LTMA:分层主题匹配,用于主题建模结果的比较探索、评估和改进
我们提出了LTMA,一种分层主题匹配方法,用于主题建模结果的无监督比较分析。由于有大量可用的建模算法,对其结果进行高效和有效的比较对于数据和任务驱动的模型选择是有害的。LTMA通过提供基于两层(文档重叠和关键字相似)的主题匹配来自动化这种比较分析,从而创建了一种新颖的主题匹配数据结构。此数据结构为模型探索和优化构建了基础,因此,允许在给定类型的文本数据和任务上下文中有效地评估它们的性能。这对于不容易获得带注释的金标准数据集的文本类型尤其重要,因此不适用定量评估方法。我们通过三个用例验证了我们的技术的有用性,即:(1)主题模型的自动比较评估,(2)主题建模差异的视觉探索,(3)通过组合匹配优化主题建模结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Immersive Analytics Multisensory Immersive Analytics Immersive Analytics Applications in Life and Health Sciences Immersive Analytics: An Introduction Immersive Human-Centered Computational Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1