Busy-Time Scheduling on Heterogeneous Machines

Runtian Ren, Xueyan Tang
{"title":"Busy-Time Scheduling on Heterogeneous Machines","authors":"Runtian Ren, Xueyan Tang","doi":"10.1109/IPDPS47924.2020.00040","DOIUrl":null,"url":null,"abstract":"We study a busy-time scheduling problem on heterogeneous machines (BSHM) which is motivated by server acquisition and task dispatching in cloud computing. The input of BSHM is a set of interval jobs, each specified by a size, an arrival time and a departure time. When a job arrives, it must be placed onto a machine immediately. The execution of a job cannot be interrupted until it departs. At any time, the total size of the jobs running on a machine cannot exceed the machine’s capacity. different types of machines are available and abundant machines are provided for each type. A type-i machine has a capacity gi and is charged at a cost rate ri when busy (running jobs). The target of BSHM is to schedule the given set of jobs onto machines with the minimum accumulated cost. Suppose the machine types are sorted by their capacities so that g1 ≤ g2 ≤? ≤ gm. We first consider two typical cases of BSHM. In BSHM-DEC,$\\frac{{{r_i}}}{{{g_i}}} \\geq \\frac{{{r_{i + 1}}}}{{{g_{i + 1}}}}$ holds for each i. In BSHM-INC, $\\frac{{{r_i}}}{{{g_i}}} \\leq \\frac{{{r_{i + 1}}}}{{{g_{i + 1}}}}$ holds for each i. For each case, we propose a O (1) approximation algorithm in the offline setting and a O(μ)-competitive algorithm in the non-clairvoyant online setting. Finally, we discuss how the scheduling strategies developed for these two cases can be combined to deal with the general BSHM problem.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"28 1","pages":"306-315"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study a busy-time scheduling problem on heterogeneous machines (BSHM) which is motivated by server acquisition and task dispatching in cloud computing. The input of BSHM is a set of interval jobs, each specified by a size, an arrival time and a departure time. When a job arrives, it must be placed onto a machine immediately. The execution of a job cannot be interrupted until it departs. At any time, the total size of the jobs running on a machine cannot exceed the machine’s capacity. different types of machines are available and abundant machines are provided for each type. A type-i machine has a capacity gi and is charged at a cost rate ri when busy (running jobs). The target of BSHM is to schedule the given set of jobs onto machines with the minimum accumulated cost. Suppose the machine types are sorted by their capacities so that g1 ≤ g2 ≤? ≤ gm. We first consider two typical cases of BSHM. In BSHM-DEC,$\frac{{{r_i}}}{{{g_i}}} \geq \frac{{{r_{i + 1}}}}{{{g_{i + 1}}}}$ holds for each i. In BSHM-INC, $\frac{{{r_i}}}{{{g_i}}} \leq \frac{{{r_{i + 1}}}}{{{g_{i + 1}}}}$ holds for each i. For each case, we propose a O (1) approximation algorithm in the offline setting and a O(μ)-competitive algorithm in the non-clairvoyant online setting. Finally, we discuss how the scheduling strategies developed for these two cases can be combined to deal with the general BSHM problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构机器上的忙时调度
研究了云计算中基于服务器获取和任务调度的异构机(BSHM)繁忙时间调度问题。BSHM的输入是一组间隔作业,每个作业由大小、到达时间和离开时间指定。当作业到达时,必须立即将其放到机器上。作业的执行不能被中断,直到它离开。在任何时候,一台机器上运行的作业的总大小都不能超过该机器的容量。不同类型的机器可供选择,并为每种类型提供丰富的机器。type-i机器的容量为gi,在繁忙(运行作业)时按成本率ri收费。BSHM的目标是以最小的累积成本将给定的一组作业调度到机器上。假设机器类型按容量排序,g1≤g2≤?≤gm。我们首先考虑两个典型的BSHM病例。在BSHM-DEC中,$\frac{{{r_i}}}{{{g_i}}} \geq \frac{{{r_{i + 1}}}}{{{g_{i + 1}}}}$对每个i都成立。在BSHM-INC中,$\frac{{{r_i}}}{{{g_i}}} \leq \frac{{{r_{i + 1}}}}{{{g_{i + 1}}}}$对每个i都成立。对于每种情况,我们分别提出了离线情况下的O(1)近似算法和非千里眼在线情况下的O(μ)竞争算法。最后,我们讨论了针对这两种情况开发的调度策略如何结合起来处理一般的BSHM问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynch-SGBDT: Train Stochastic Gradient Boosting Decision Trees in an Asynchronous Parallel Manner Resilience at Extreme Scale and Connections with Other Domains A Tale of Two C's: Convergence and Composability 12 Ways to Fool the Masses with Irreproducible Results Is Asymptotic Cost Analysis Useful in Developing Practical Parallel Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1