Entropy as a measure of dependency for categorized data

E. Skotarczak, A. Dobek, K. Moliński
{"title":"Entropy as a measure of dependency for categorized data","authors":"E. Skotarczak, A. Dobek, K. Moliński","doi":"10.2478/bile-2018-0014","DOIUrl":null,"url":null,"abstract":"Summary Data arranged in a two-way contingency table can be obtained as a result of many experiments in the life sciences. In some cases the categorized trait is in fact conditioned by an unobservable continuous variable, called liability. It may be interesting to know the relationship between the Pearson correlation coefficient of these two continuous variables and the entropy function measuring the corresponding relation for categorized data. After many simulation trials, a linear regression was estimated between the Pearson correlation coefficient and the normalized mutual information (both on a logarithmic scale). It was observed that the regression coefficients obtained do not depend either on the number of observations classified on a categorical scale or on the continuous random distribution used for the latent variable, but they are influenced by the number of columns in the contingency table. In this paper a known measure of dependency for such data, based on the entropy concept, is applied.","PeriodicalId":8933,"journal":{"name":"Biometrical Letters","volume":"28 1","pages":"233 - 243"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bile-2018-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Summary Data arranged in a two-way contingency table can be obtained as a result of many experiments in the life sciences. In some cases the categorized trait is in fact conditioned by an unobservable continuous variable, called liability. It may be interesting to know the relationship between the Pearson correlation coefficient of these two continuous variables and the entropy function measuring the corresponding relation for categorized data. After many simulation trials, a linear regression was estimated between the Pearson correlation coefficient and the normalized mutual information (both on a logarithmic scale). It was observed that the regression coefficients obtained do not depend either on the number of observations classified on a categorical scale or on the continuous random distribution used for the latent variable, but they are influenced by the number of columns in the contingency table. In this paper a known measure of dependency for such data, based on the entropy concept, is applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熵是对分类数据依赖性的度量
用双向列联表排列的数据是生命科学中许多实验的结果。在某些情况下,分类特征实际上是由一个不可观察的连续变量(称为负债)决定的。了解这两个连续变量的Pearson相关系数与度量分类数据对应关系的熵函数之间的关系可能会很有趣。经过多次模拟试验,估计Pearson相关系数和归一化互信息(均在对数尺度上)之间存在线性回归。观察到,得到的回归系数既不取决于分类尺度上分类的观测值的数量,也不取决于用于潜在变量的连续随机分布,但它们受列联表中列数的影响。在本文中,基于熵的概念,对这类数据应用了一种已知的依赖性度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Existence, uniqueness, boundedness and stability of periodic solutions of a certain second-order nonlinear differential equation with damping and resonance effects Stability analysis of spring oat genotypes in south-west Poland Mathematical model for the transmission of mumps and its optimal control Johnson–Schumacher Split-Plot Design Modelling of Rice Yield D-optimal chemical balance weighing designs with positively correlated errors: part I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1