Titanium Dioxide as Energy Storage Material: A Review on Recent Advancement

Tarun F. Parangi, M. Mishra
{"title":"Titanium Dioxide as Energy Storage Material: A Review on Recent Advancement","authors":"Tarun F. Parangi, M. Mishra","doi":"10.5772/intechopen.99254","DOIUrl":null,"url":null,"abstract":"With the increased attention on sustainable energy, a novel interest has been generated towards construction of energy storage materials and energy conversion devices at minimum environmental impact. Apart from the various potential applications of titanium dioxide (TiO2), a variety of TiO2 nanostructure (nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes) are being studied as a promising materials in durable active battery materials. The specific features such as high safety, low cost, thermal and chemical stability, and moderate capacity of TiO2 nanomaterial made itself as a most interesting candidate for fulfilling the current demand and understanding the related challenges towards the preparation of effective energy storage system. Many more synthetic approaches have been adapted to design different nanostructures for improving the electronic conductivity of TiO2 by combining with other materials such as carbonaceous materials, conducting polymers, metal oxides etc. The combination can be done through incorporating and doping methods to synthesize TiO2-based anodic materials having more open channels and active sites for lithium and/or sodium ion transportation. The present chapter contained a broad literature and discussion on the synthetic approaches for TiO2-based anodic materials for enhancing the lithium ion batteries (LIBs) and sodium ion batteries (SIBs) performance. Based on lithium storage mechanism and role of anodic material, we could conclude on future exploitation development of titania and titania based materials as energy storage materials.","PeriodicalId":23112,"journal":{"name":"Titanium Dioxide [Working Title]","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Titanium Dioxide [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.99254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the increased attention on sustainable energy, a novel interest has been generated towards construction of energy storage materials and energy conversion devices at minimum environmental impact. Apart from the various potential applications of titanium dioxide (TiO2), a variety of TiO2 nanostructure (nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes) are being studied as a promising materials in durable active battery materials. The specific features such as high safety, low cost, thermal and chemical stability, and moderate capacity of TiO2 nanomaterial made itself as a most interesting candidate for fulfilling the current demand and understanding the related challenges towards the preparation of effective energy storage system. Many more synthetic approaches have been adapted to design different nanostructures for improving the electronic conductivity of TiO2 by combining with other materials such as carbonaceous materials, conducting polymers, metal oxides etc. The combination can be done through incorporating and doping methods to synthesize TiO2-based anodic materials having more open channels and active sites for lithium and/or sodium ion transportation. The present chapter contained a broad literature and discussion on the synthetic approaches for TiO2-based anodic materials for enhancing the lithium ion batteries (LIBs) and sodium ion batteries (SIBs) performance. Based on lithium storage mechanism and role of anodic material, we could conclude on future exploitation development of titania and titania based materials as energy storage materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化钛作为储能材料的研究进展
随着人们对可持续能源的日益关注,人们对建造对环境影响最小的储能材料和能量转换装置产生了新的兴趣。除了二氧化钛(TiO2)的各种潜在应用外,各种二氧化钛纳米结构(纳米颗粒、纳米棒、纳米针、纳米线和纳米管)作为一种有前景的耐用活性电池材料正在被研究。二氧化钛纳米材料具有高安全性、低成本、热稳定性和化学稳定性以及容量适中等特点,是满足当前需求和了解制备有效储能系统相关挑战的最有趣的候选材料。更多的合成方法被用于设计不同的纳米结构,通过与其他材料(如碳质材料、导电聚合物、金属氧化物等)结合来提高TiO2的电子导电性。这种结合可以通过掺入和掺杂的方法来合成具有更多开放通道和活性位点的二氧化钛基阳极材料,用于锂离子和/或钠离子的运输。本章对提高锂离子电池和钠离子电池性能的二氧化钛基阳极材料的合成方法进行了广泛的文献和讨论。基于锂的储存机理和阳极材料的作用,对钛及钛基材料作为储能材料的开发发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic Applications of Titanium Dioxide (TiO2) Titanium Dioxide and Its Applications in Mechanical, Electrical, Optical, and Biomedical Fields TiO2: A Semiconductor Photocatalyst Applications of Titanium Dioxide Materials Titanium Dioxide – A Missing Photo-Responsive Material for Solar-Driven Oil Spill Remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1