A Survey of Similarity Measures for Time stamped Temporal Datasets

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460754
Aravind Cheruvu, V. Radhakrishna
{"title":"A Survey of Similarity Measures for Time stamped Temporal Datasets","authors":"Aravind Cheruvu, V. Radhakrishna","doi":"10.1145/3460620.3460754","DOIUrl":null,"url":null,"abstract":"Temporal transactional databases are transactional databases which store data in a temporal aspect. Usage of similarity of measures in temporal data mining tasks have gained significant importance to retrieve information and interesting patterns in data. It is always crucial to understand and decide what similarity measure we should use while performing a data mining task and this is always driven by the actual data and nature of the temporal data sets. The main objective of this research is to perform a detailed survey of the various similarity measures used in the temporal data mining in recent research contributions. This paper also provides insights on how these similarity measures are used in the Temporal association rule mining algorithms based on the works carried out in the literature.","PeriodicalId":36824,"journal":{"name":"Data","volume":"33 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal transactional databases are transactional databases which store data in a temporal aspect. Usage of similarity of measures in temporal data mining tasks have gained significant importance to retrieve information and interesting patterns in data. It is always crucial to understand and decide what similarity measure we should use while performing a data mining task and this is always driven by the actual data and nature of the temporal data sets. The main objective of this research is to perform a detailed survey of the various similarity measures used in the temporal data mining in recent research contributions. This paper also provides insights on how these similarity measures are used in the Temporal association rule mining algorithms based on the works carried out in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间戳时间数据集相似性度量的研究
时态事务数据库是在时态方面存储数据的事务性数据库。在时态数据挖掘任务中使用度量相似度对于检索数据中的信息和感兴趣的模式具有重要意义。在执行数据挖掘任务时,理解和决定我们应该使用什么相似性度量总是至关重要的,这总是由实际数据和时态数据集的性质驱动的。本研究的主要目的是对最近的研究贡献中用于时间数据挖掘的各种相似性度量进行详细的调查。本文还基于文献中开展的工作,提供了如何在时态关联规则挖掘算法中使用这些相似性度量的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
期刊最新文献
Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach Expert-Annotated Dataset to Study Cyberbullying in Polish Language Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004 A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1