Constraint-based algorithm to estimate the line of a milling edge

Marcin Bator, K. Śmietańska
{"title":"Constraint-based algorithm to estimate the line of a milling edge","authors":"Marcin Bator, K. Śmietańska","doi":"10.22630/mgv.2019.28.1.6","DOIUrl":null,"url":null,"abstract":"Each practical task has its constraints. They limit the number of potential solutions. Incorporation of the constraints into the structure of an algorithm makes it possible to speed up computations by reducing the search space and excluding the wrong results. However, such an algorithm needs to be designed for one task only, has a limited usefulness to tasks which have the same set of constrains. Therefore, sometimes is limited to just a single application for which it has been designed, and is difficult to generalise. An algorithm to estimate the straight line representing a milling edge is presented. The algorithm was designed for the measurement purposes and meets the requirements related to precision.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2019.28.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Each practical task has its constraints. They limit the number of potential solutions. Incorporation of the constraints into the structure of an algorithm makes it possible to speed up computations by reducing the search space and excluding the wrong results. However, such an algorithm needs to be designed for one task only, has a limited usefulness to tasks which have the same set of constrains. Therefore, sometimes is limited to just a single application for which it has been designed, and is difficult to generalise. An algorithm to estimate the straight line representing a milling edge is presented. The algorithm was designed for the measurement purposes and meets the requirements related to precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于约束的铣削刃线估计算法
每一项实际任务都有其局限性。它们限制了潜在解决方案的数量。在算法结构中加入约束可以通过减少搜索空间和排除错误结果来加快计算速度。然而,这种算法只需要为一个任务设计,对于具有相同约束集的任务的有用性有限。因此,有时它被限制在它所设计的单一应用程序中,并且很难推广。提出了一种估计铣削边缘直线的算法。该算法是为测量目的而设计的,满足精度要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Graphics and Vision
Machine Graphics and Vision Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling
期刊最新文献
Use of virtual reality to facilitate engineer training in the aerospace industry An efficient pedestrian attributes recognition system under challenging conditions Performance evaluation of Machine Learning models to predict heart attack Lung and colon cancer detection from CT images using Deep Learning Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1