Calibration and Validation of Micromagnetic Data for Non-Destructive Analysis of Near-Surface Properties after Hard Turning

IF 0.3 Q4 THERMODYNAMICS HTM-Journal of Heat Treatment and Materials Pub Date : 2022-04-01 DOI:10.1515/htm-2021-0023
T. Wegener, A. Liehr, A. Bolender, S. Degener, F. Wittich, A. Kroll, T. Niendorf
{"title":"Calibration and Validation of Micromagnetic Data for Non-Destructive Analysis of Near-Surface Properties after Hard Turning","authors":"T. Wegener, A. Liehr, A. Bolender, S. Degener, F. Wittich, A. Kroll, T. Niendorf","doi":"10.1515/htm-2021-0023","DOIUrl":null,"url":null,"abstract":"Abstract Micromagnetic non-destructive (NDT) methods offer a great potential for the analysis of near-surface properties after machining due to potential time and cost reduction as well as the option to be implemented into the machining process. As a result, the development of soft sensor concepts including micromagnetic NDT methods is in focus of current investigations in order to eventually improve the surface integrity of machined components and, thus, service life and reliability. However, a preceding calibration based on empirical data as well as a reliable validation is often referred to as one of the main challenges of micromagnetic NDT methods. The present study provides insights into the calibration and validation of a micromagnetic 3MA-II system for NDT analysis of the near-surface properties, with a focus on the residual stress depth profiles after hard turning of 51CrV4 specimens. Different calibration functions as well as a combination of different NDT methods are taken into consideration. The results and the potential of the 3MA system as well as open challenges are critically discussed.","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":"7 1","pages":"156 - 172"},"PeriodicalIF":0.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2021-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Micromagnetic non-destructive (NDT) methods offer a great potential for the analysis of near-surface properties after machining due to potential time and cost reduction as well as the option to be implemented into the machining process. As a result, the development of soft sensor concepts including micromagnetic NDT methods is in focus of current investigations in order to eventually improve the surface integrity of machined components and, thus, service life and reliability. However, a preceding calibration based on empirical data as well as a reliable validation is often referred to as one of the main challenges of micromagnetic NDT methods. The present study provides insights into the calibration and validation of a micromagnetic 3MA-II system for NDT analysis of the near-surface properties, with a focus on the residual stress depth profiles after hard turning of 51CrV4 specimens. Different calibration functions as well as a combination of different NDT methods are taken into consideration. The results and the potential of the 3MA system as well as open challenges are critically discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于硬车削后近表面特性无损分析的微磁数据校准与验证
微磁无损检测(NDT)方法为加工后近表面特性的分析提供了巨大的潜力,因为它可以减少时间和成本,以及在加工过程中实施的选择。因此,包括微磁无损检测方法在内的软传感器概念的发展是当前研究的重点,目的是最终提高加工部件的表面完整性,从而提高使用寿命和可靠性。然而,基于经验数据的预先校准以及可靠的验证通常被认为是微磁无损检测方法的主要挑战之一。本研究提供了用于近表面特性无损检测分析的微磁3MA-II系统的校准和验证,重点研究了51CrV4试样硬车削后的残余应力深度分布。考虑了不同的校准函数以及不同无损检测方法的组合。结果和潜力的3MA系统以及开放的挑战进行了批判性讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
33.30%
发文量
43
期刊最新文献
HTM Praxis Combined CFD and Heat Treatment Simulation of High-Pressure Gas Quenching Process Optimizing the Solution Annealing of Additively Manufactured AlSi10Mg AWT-Info / HTM 05-2023 Contents / Inhalt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1