{"title":"Design and characterizations of pH-responsive drug delivery vehicles using molecular docking","authors":"Gauri Chavan, D. Das","doi":"10.1080/10667857.2023.2196490","DOIUrl":null,"url":null,"abstract":"ABSTRACT Performing wet bench experiments to search for lead molecules for drug delivery is a long and tedious process where computational tools have played a crucial role. Molecular docking studies have been carried out for selecting the nanocarrier, and the results of the computational studies have been validated using the model protein Ova albumin and anticancer drug 5-Fluorouracil (5-FU) with mesoporous silica (MSNPs) and chitosan nanoparticles (CSNPs) as the nanocarriers. Formulated nanocarriers were tested for in-vitro release, which showed a sustained release of the drugs. In-vitro studies on the lung cancer cell line A459 revealed excellent biocompatibility and non-toxic nature of the designed drug delivery system. This chitosan nanoparticle-based drug delivery system could have the potential for chemotherapeutic treatment of cancer.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"2 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2196490","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Performing wet bench experiments to search for lead molecules for drug delivery is a long and tedious process where computational tools have played a crucial role. Molecular docking studies have been carried out for selecting the nanocarrier, and the results of the computational studies have been validated using the model protein Ova albumin and anticancer drug 5-Fluorouracil (5-FU) with mesoporous silica (MSNPs) and chitosan nanoparticles (CSNPs) as the nanocarriers. Formulated nanocarriers were tested for in-vitro release, which showed a sustained release of the drugs. In-vitro studies on the lung cancer cell line A459 revealed excellent biocompatibility and non-toxic nature of the designed drug delivery system. This chitosan nanoparticle-based drug delivery system could have the potential for chemotherapeutic treatment of cancer.
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.