Generalized Linear Randomized Response Modeling using GLMMRR

R J. Pub Date : 2021-06-18 DOI:10.32614/rj-2021-104
J. Fox, K. Klotzke, D. Veen
{"title":"Generalized Linear Randomized Response Modeling using GLMMRR","authors":"J. Fox, K. Klotzke, D. Veen","doi":"10.32614/rj-2021-104","DOIUrl":null,"url":null,"abstract":"Randomized response (RR) designs are used to collect response data about sensitive behaviors (e.g., criminal behavior, sexual desires). The modeling of RR data is more complex since it requires a description of the RR process. For the class of generalized linear mixed models (GLMMs), the RR process can be represented by an adjusted link function, which relates the expected RR to the linear predictor for most common RR designs. The package GLMMRR includes modified link functions for four different cumulative distributions (i.e., logistic, cumulative normal, Gumbel, Cauchy) for GLMs and GLMMs, where the package lme4 facilitates ML and REML estimation. The mixed modeling framework in GLMMRR can be used to jointly analyze data collected under different designs (e.g., dual questioning, multilevel, mixed mode, repeated measurements designs, multiple-group designs). Model-fit tests, tools for residual analyses, and plot functions to give support to a profound RR data analysis are added to the well-known features of the GLM and GLMM software (package lme4). Data of Höglinger and Jann (2018) and Höglinger, Jann, and Diekmann (2014) are used to illustrate the methodology and software.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"50 1","pages":"507"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Randomized response (RR) designs are used to collect response data about sensitive behaviors (e.g., criminal behavior, sexual desires). The modeling of RR data is more complex since it requires a description of the RR process. For the class of generalized linear mixed models (GLMMs), the RR process can be represented by an adjusted link function, which relates the expected RR to the linear predictor for most common RR designs. The package GLMMRR includes modified link functions for four different cumulative distributions (i.e., logistic, cumulative normal, Gumbel, Cauchy) for GLMs and GLMMs, where the package lme4 facilitates ML and REML estimation. The mixed modeling framework in GLMMRR can be used to jointly analyze data collected under different designs (e.g., dual questioning, multilevel, mixed mode, repeated measurements designs, multiple-group designs). Model-fit tests, tools for residual analyses, and plot functions to give support to a profound RR data analysis are added to the well-known features of the GLM and GLMM software (package lme4). Data of Höglinger and Jann (2018) and Höglinger, Jann, and Diekmann (2014) are used to illustrate the methodology and software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GLMMRR的广义线性随机响应建模
随机反应(RR)设计用于收集敏感行为(如犯罪行为、性欲)的反应数据。RR数据的建模更为复杂,因为它需要对RR过程进行描述。对于广义线性混合模型(glmm), RR过程可以用一个调整后的链接函数来表示,该函数将期望RR与大多数常见RR设计的线性预测器联系起来。GLMMRR包包含针对glm和glmm的四种不同累积分布(即logistic、累积正态、Gumbel、Cauchy)的修改链接函数,其中包lme4促进了ML和REML的估计。GLMMRR中的混合建模框架可用于联合分析不同设计(如双问、多级、混合模式、重复测量设计、多组设计)下收集的数据。模型拟合检验、残差分析工具和支持深度RR数据分析的绘图函数被添加到GLM和GLMM软件(软件包lme4)的众所周知的功能中。使用Höglinger and Jann(2018)和Höglinger, Jann, and Diekmann(2014)的数据来说明方法和软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1