rassta: Raster-Based Spatial Stratification Algorithms

R J. Pub Date : 2021-11-17 DOI:10.31223/x50s57
B. Fuentes, Minerva J. Dorantes, John R. Tipton
{"title":"rassta: Raster-Based Spatial Stratification Algorithms","authors":"B. Fuentes, Minerva J. Dorantes, John R. Tipton","doi":"10.31223/x50s57","DOIUrl":null,"url":null,"abstract":"Spatial stratification of landscapes allows for the development of efficient sampling surveys,the inclusion of domain knowledge in data-driven modeling frameworks, and the production of information relating the spatial variability of response phenomena to that of landscape processes. This work presents the rassta package as a collection of algorithms dedicated to the spatial stratification of landscapes, the calculation of landscape correspondence metrics across geographic space, and the application of these metrics for spatial sampling and modeling of environmental phenomena. The theoretical background of rassta is presented through references to several studies which have benefited from landscape stratification routines. The functionality of rassta is presented through code examples which are complemented with the geographic visualization of their outputs.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"11 1","pages":"288-309"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31223/x50s57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spatial stratification of landscapes allows for the development of efficient sampling surveys,the inclusion of domain knowledge in data-driven modeling frameworks, and the production of information relating the spatial variability of response phenomena to that of landscape processes. This work presents the rassta package as a collection of algorithms dedicated to the spatial stratification of landscapes, the calculation of landscape correspondence metrics across geographic space, and the application of these metrics for spatial sampling and modeling of environmental phenomena. The theoretical background of rassta is presented through references to several studies which have benefited from landscape stratification routines. The functionality of rassta is presented through code examples which are complemented with the geographic visualization of their outputs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于栅格的空间分层算法
景观的空间分层允许开展有效的抽样调查,将领域知识纳入数据驱动的建模框架,并产生与景观过程的响应现象的空间变异性有关的信息。这项工作将rassta包作为一系列算法的集合,专门用于景观的空间分层,跨地理空间的景观对应度量的计算,以及这些度量在空间采样和环境现象建模中的应用。通过参考几项得益于景观分层惯例的研究,介绍了景观分层的理论背景。rassta的功能通过代码示例展示,并辅以其输出的地理可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1