Clustering of EEG occipital signals using k-means

Víctor Asanza, Kerly Ochoa, Christian Sacarelo, Carlos Salazar, Francis R. Loayza, Carmen Vaca, Enrique Peláez
{"title":"Clustering of EEG occipital signals using k-means","authors":"Víctor Asanza, Kerly Ochoa, Christian Sacarelo, Carlos Salazar, Francis R. Loayza, Carmen Vaca, Enrique Peláez","doi":"10.1109/ETCM.2016.7750874","DOIUrl":null,"url":null,"abstract":"Recent studies show that it is feasible to use electrical signals from Electro-encephalography (EEG) to control devices or prostheses, these signals are provided by the body and can be measured on the scalp to determine the intent of the person when it is observing a visual stimulus frequency range detectable by the human eye. This group of signals are very susceptible to noise due to voltage levels that are able to acquire. Therefore, in this work we propose a statistical analysis of the distribution of normal EEG signals in order to determine the need of a pre-processing to remove noise components from electrical grids or other possible sources. This preprocessing includes the design and use of a filter that will eliminate any signal component that is not in the operating frequency range of the EEG occipital area of the brain. Finally, we will proceed to use the k-means algorithm to cluster with signals according to their frequency and temporal characteristics.","PeriodicalId":6480,"journal":{"name":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","volume":"8 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2016.7750874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recent studies show that it is feasible to use electrical signals from Electro-encephalography (EEG) to control devices or prostheses, these signals are provided by the body and can be measured on the scalp to determine the intent of the person when it is observing a visual stimulus frequency range detectable by the human eye. This group of signals are very susceptible to noise due to voltage levels that are able to acquire. Therefore, in this work we propose a statistical analysis of the distribution of normal EEG signals in order to determine the need of a pre-processing to remove noise components from electrical grids or other possible sources. This preprocessing includes the design and use of a filter that will eliminate any signal component that is not in the operating frequency range of the EEG occipital area of the brain. Finally, we will proceed to use the k-means algorithm to cluster with signals according to their frequency and temporal characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k-均值的脑电信号聚类
最近的研究表明,使用脑电图(EEG)的电信号来控制设备或假体是可行的,这些信号由身体提供,可以在头皮上测量,以确定人在观察人眼可检测到的视觉刺激频率范围时的意图。由于能够获得的电压水平,这组信号非常容易受到噪声的影响。因此,在这项工作中,我们提出对正常脑电图信号的分布进行统计分析,以确定是否需要预处理以去除电网或其他可能来源的噪声成分。这种预处理包括设计和使用滤波器,该滤波器将消除不在脑电图枕区工作频率范围内的任何信号成分。最后,我们将继续使用k-means算法根据频率和时间特征对信号进行聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a smart glove as a communication tool for people with hearing impairment and speech disorders Algorithm and rapid intervention to attenuate Zika virus outbreak in large cities EMR system synchronization Trajectory tracking for quadcopter's formation with two control strategies Performance evaluation of radar systems in noise jamming environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1