UNIVERSAL IMAGE NOISE REMOVAL FILTER BASED ON TYPE-2 FUZZY LOGIC SYSTEM AND QPSO

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Uncertainty Fuzziness and Knowledge-Based Systems Pub Date : 2012-09-11 DOI:10.1142/S0218488512400211
Daoyuan Zhai, M. Hao, J. Mendel
{"title":"UNIVERSAL IMAGE NOISE REMOVAL FILTER BASED ON TYPE-2 FUZZY LOGIC SYSTEM AND QPSO","authors":"Daoyuan Zhai, M. Hao, J. Mendel","doi":"10.1142/S0218488512400211","DOIUrl":null,"url":null,"abstract":"Removing Mixed Gaussian and Impulse Noise (MGIN) is considered to be one of the most essential topics in the domain of image restoration, and it is much more challenging than to remove pure Gaussian or impulse noise separately. Therefore, relatively fewer works have been published in this area. This paper proposes a new integrated approach for MGIN removal that is based on a Non-Singleton Interval Type-2 (NS-IT2) Fuzzy Logic System (FLS), and explains how to design such a NS-IT2 FLS using a Quantum-behaved Particle Swarm Optimization (QPSO) algorithm. Then the paper goes on to introduce two supplementary components, a Block-Matching 3-Dimensional Discrete Cosine Transformation (BM3D DCT) filter and a contrast scaling filter, which augment the overall performance of the NS-IT2 FLS. Finally, the paper shows that this proposed approach indeed provides both quantitatively and visually much better results compared to other often-used non-fuzzy techniques as well as its Type-1 (T1) and singleton IT2 (S-IT2) counterparts.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"11 1","pages":"207-232"},"PeriodicalIF":1.0000,"publicationDate":"2012-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488512400211","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 19

Abstract

Removing Mixed Gaussian and Impulse Noise (MGIN) is considered to be one of the most essential topics in the domain of image restoration, and it is much more challenging than to remove pure Gaussian or impulse noise separately. Therefore, relatively fewer works have been published in this area. This paper proposes a new integrated approach for MGIN removal that is based on a Non-Singleton Interval Type-2 (NS-IT2) Fuzzy Logic System (FLS), and explains how to design such a NS-IT2 FLS using a Quantum-behaved Particle Swarm Optimization (QPSO) algorithm. Then the paper goes on to introduce two supplementary components, a Block-Matching 3-Dimensional Discrete Cosine Transformation (BM3D DCT) filter and a contrast scaling filter, which augment the overall performance of the NS-IT2 FLS. Finally, the paper shows that this proposed approach indeed provides both quantitatively and visually much better results compared to other often-used non-fuzzy techniques as well as its Type-1 (T1) and singleton IT2 (S-IT2) counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二类模糊逻辑系统和qpso的通用图像去噪滤波器
去除混合高斯和脉冲噪声(MGIN)被认为是图像恢复领域中最重要的课题之一,它比单独去除纯高斯和脉冲噪声更具挑战性。因此,在这方面发表的作品相对较少。本文提出了一种基于非单点区间2型(NS-IT2)模糊逻辑系统(FLS)的综合MGIN去除方法,并解释了如何利用量子粒子群优化(QPSO)算法设计NS-IT2模糊逻辑系统。然后介绍了两个补充组件,即块匹配三维离散余弦变换(BM3D DCT)滤波器和对比度缩放滤波器,它们增强了NS-IT2 FLS的整体性能。最后,本文表明,与其他常用的非模糊技术以及Type-1 (T1)和单例IT2 (S-IT2)相比,该方法确实在定量和视觉上都提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
期刊最新文献
A Structure-Enhanced Heterogeneous Graph Representation Learning with Attention-Supplemented Embedding Fusion Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data PSO Based Constraint Optimization of Intuitionistic Fuzzy Shortest Path Problem in an Undirected Network Model Predictive Control for Interval Type-2 Fuzzy Systems with Unknown Time-Varying Delay in States and Input Vector An OWA Based MCDM Framework for Analyzing Multidimensional Twitter Data: A Case Study on the Citizen-Government Engagement During COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1