{"title":"Improved document ranking in ontology-based document search engine using evidential reasoning","authors":"Wenhu Tang, Long Yan, Zhen Yang, Q. Wu","doi":"10.1049/iet-sen.2013.0015","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach to document ranking in an ontology-based document search engine (ODSE) using evidential reasoning (ER). Firstly, a domain ontology model, used for query expansion, and a connection interface to an ODSE are developed. A multiple attribute decision making (MADM) tree model is proposed to organise expanded query terms. Then, an ER algorithm, based on the Dempster-Shafer theory, is used for evidence combination in the MADM tree model. The proposed approach is discussed in a generic frame for document ranking, which is evaluated using document queries in the domain of electrical substation fault diagnosis. The results show that the proposed approach provides a suitable solution to document ranking and the precision at the same recall levels for ODSE searches have been improved significantly with ER embedded, in comparison with a traditional keyword-matching search engine, an ODSE without ER and a non-randomness-based weighting model.","PeriodicalId":13395,"journal":{"name":"IET Softw.","volume":"45 1","pages":"33-41"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-sen.2013.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This study presents a novel approach to document ranking in an ontology-based document search engine (ODSE) using evidential reasoning (ER). Firstly, a domain ontology model, used for query expansion, and a connection interface to an ODSE are developed. A multiple attribute decision making (MADM) tree model is proposed to organise expanded query terms. Then, an ER algorithm, based on the Dempster-Shafer theory, is used for evidence combination in the MADM tree model. The proposed approach is discussed in a generic frame for document ranking, which is evaluated using document queries in the domain of electrical substation fault diagnosis. The results show that the proposed approach provides a suitable solution to document ranking and the precision at the same recall levels for ODSE searches have been improved significantly with ER embedded, in comparison with a traditional keyword-matching search engine, an ODSE without ER and a non-randomness-based weighting model.