Generative Hierarchical Learning of Sparse FRAME Models

Jianwen Xie, Yifei Xu, Erik Nijkamp, Y. Wu, Song-Chun Zhu
{"title":"Generative Hierarchical Learning of Sparse FRAME Models","authors":"Jianwen Xie, Yifei Xu, Erik Nijkamp, Y. Wu, Song-Chun Zhu","doi":"10.1109/CVPR.2017.209","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for generative learning of hierarchical random field models. The resulting model, which we call the hierarchical sparse FRAME (Filters, Random field, And Maximum Entropy) model, is a generalization of the original sparse FRAME model by decomposing it into multiple parts that are allowed to shift their locations, scales and rotations, so that the resulting model becomes a hierarchical deformable template. The model can be trained by an EM-type algorithm that alternates the following two steps: (1) Inference: Given the current model, we match it to each training image by inferring the unknown locations, scales, and rotations of the object and its parts by recursive sum-max maps, and (2) Re-learning: Given the inferred geometric configurations of the objects and their parts, we re-learn the model parameters by maximum likelihood estimation via stochastic gradient algorithm. Experiments show that the proposed method is capable of learning meaningful and interpretable templates that can be used for object detection, classification and clustering.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"18 1","pages":"1933-1941"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a method for generative learning of hierarchical random field models. The resulting model, which we call the hierarchical sparse FRAME (Filters, Random field, And Maximum Entropy) model, is a generalization of the original sparse FRAME model by decomposing it into multiple parts that are allowed to shift their locations, scales and rotations, so that the resulting model becomes a hierarchical deformable template. The model can be trained by an EM-type algorithm that alternates the following two steps: (1) Inference: Given the current model, we match it to each training image by inferring the unknown locations, scales, and rotations of the object and its parts by recursive sum-max maps, and (2) Re-learning: Given the inferred geometric configurations of the objects and their parts, we re-learn the model parameters by maximum likelihood estimation via stochastic gradient algorithm. Experiments show that the proposed method is capable of learning meaningful and interpretable templates that can be used for object detection, classification and clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏框架模型的生成层次学习
提出了一种分层随机场模型的生成学习方法。我们将得到的模型称为分层稀疏FRAME (Filters, Random field, And Maximum Entropy)模型,它是对原始稀疏FRAME模型的推广,将其分解为多个部分,这些部分可以移动它们的位置、比例和旋转,从而使得到的模型成为一个分层可变形的模板。该模型可以通过em类型的算法进行训练,该算法交替进行以下两个步骤:(1)推断:给定当前模型,我们通过递归和最大映射推断物体及其部分的未知位置、尺度和旋转,将其与每个训练图像进行匹配;(2)重新学习:给定推断的物体及其部分的几何构型,我们通过随机梯度算法通过最大似然估计重新学习模型参数。实验表明,该方法能够学习有意义且可解释的模板,用于目标检测、分类和聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1