Jianwen Xie, Yifei Xu, Erik Nijkamp, Y. Wu, Song-Chun Zhu
{"title":"Generative Hierarchical Learning of Sparse FRAME Models","authors":"Jianwen Xie, Yifei Xu, Erik Nijkamp, Y. Wu, Song-Chun Zhu","doi":"10.1109/CVPR.2017.209","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for generative learning of hierarchical random field models. The resulting model, which we call the hierarchical sparse FRAME (Filters, Random field, And Maximum Entropy) model, is a generalization of the original sparse FRAME model by decomposing it into multiple parts that are allowed to shift their locations, scales and rotations, so that the resulting model becomes a hierarchical deformable template. The model can be trained by an EM-type algorithm that alternates the following two steps: (1) Inference: Given the current model, we match it to each training image by inferring the unknown locations, scales, and rotations of the object and its parts by recursive sum-max maps, and (2) Re-learning: Given the inferred geometric configurations of the objects and their parts, we re-learn the model parameters by maximum likelihood estimation via stochastic gradient algorithm. Experiments show that the proposed method is capable of learning meaningful and interpretable templates that can be used for object detection, classification and clustering.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"18 1","pages":"1933-1941"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper proposes a method for generative learning of hierarchical random field models. The resulting model, which we call the hierarchical sparse FRAME (Filters, Random field, And Maximum Entropy) model, is a generalization of the original sparse FRAME model by decomposing it into multiple parts that are allowed to shift their locations, scales and rotations, so that the resulting model becomes a hierarchical deformable template. The model can be trained by an EM-type algorithm that alternates the following two steps: (1) Inference: Given the current model, we match it to each training image by inferring the unknown locations, scales, and rotations of the object and its parts by recursive sum-max maps, and (2) Re-learning: Given the inferred geometric configurations of the objects and their parts, we re-learn the model parameters by maximum likelihood estimation via stochastic gradient algorithm. Experiments show that the proposed method is capable of learning meaningful and interpretable templates that can be used for object detection, classification and clustering.
提出了一种分层随机场模型的生成学习方法。我们将得到的模型称为分层稀疏FRAME (Filters, Random field, And Maximum Entropy)模型,它是对原始稀疏FRAME模型的推广,将其分解为多个部分,这些部分可以移动它们的位置、比例和旋转,从而使得到的模型成为一个分层可变形的模板。该模型可以通过em类型的算法进行训练,该算法交替进行以下两个步骤:(1)推断:给定当前模型,我们通过递归和最大映射推断物体及其部分的未知位置、尺度和旋转,将其与每个训练图像进行匹配;(2)重新学习:给定推断的物体及其部分的几何构型,我们通过随机梯度算法通过最大似然估计重新学习模型参数。实验表明,该方法能够学习有意义且可解释的模板,用于目标检测、分类和聚类。