(Digital Presentation) An Efficient Modeling Framework for Electrodeposition in Lithium Metal Batteries

Taejin Jang, Lubhani Mishra, M. Uppaluri, S. Roberts, V. Subramanian
{"title":"(Digital Presentation) An Efficient Modeling Framework for Electrodeposition in Lithium Metal Batteries","authors":"Taejin Jang, Lubhani Mishra, M. Uppaluri, S. Roberts, V. Subramanian","doi":"10.1149/ma2022-01461948mtgabs","DOIUrl":null,"url":null,"abstract":"Lithium metal batteries are drawing attention as a next generation of lithium-ion batteries due to their advantage of high theoretical capacity. However, the widespread application and commercialization of this potential battery technology is not achieved yet due to the poor cyclability and safety issues. Despite the recent progress1-2 and development of numerous strategies for the long and durable cyclability1-4, the analysis of lithium metal evolution still depends on the experimental approach in macroscale or molecular simulation in nanoscale5. In order to understand and optimize the system-level response of these lithium metal batteries, an accurate and robust modeling and simulation framework with a coupled macro and nanoscale approach is essential. In the previous reports, we have discussed simple 1D model to study stripping and plating of the lithium metal electrode and obtaining the characteristic inverse signatures in the cell voltage6, and appropriate boundary conditions ensuring mass conservation in a 2D model7.\n In this work, a 2D separator domain with initial surface morphology at the lithium metal electrode is considered for diffusion and migration of the lithium-ions in the domain along with reaction kinetics at the surface. The model is based on the mass and charge conservation in the system that captures the morphological evolution at the lithium metal electrode along the charge/discharge of the battery during cycling. This model is solved with in-house schemes based on spatial, temporal discretization schemes and coordinate transformation. The results show that the local current distribution at the electrode surface affects the rate and shape of the growth of the lithium metal at the negative electrode. The study has been performed for a wide range of geometric, kinetic and transport parameters. The proposed in-house model efficiently reaches a converged results compared with other numerical schemes both in speed and accuracy, and easily adaptive to optimizing tools towards cell design.\n \n Acknowledgments\n \n This research was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy (DoE) through the Advanced Battery Materials Research Program (Battery500 Consortium).\n \n References \n \n \n K. N. Wood, E. Kazyak, A. F. Chadwick, K. H. Chen, J. G. Zhang, K. Thornton, and N. P. Dasgupta, ACS Cent. Sci., 2, 790-801 (2016).\n \n \n A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui., Nano Lett., 17(2), 1132-1139 (2017).\n \n \n J. Liu, Z. Bao, Y. Cui, E. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X. Yang, and J. Zhang, Nat. Nanotechnol., 14 180-186 (2019).\n \n \n Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang, S. Kim, J. Lai, X. Kong, J. Qin, Y. Cui and Z. Bao, J. Am. Chem. Soc., \n 143(44), 18703-18713 (2021)\n \n \n S. Angarita-Gomez and P. B. Balbuena, Phys. Chem. Chem. Phys., 22, 21369-21382, (2020)\n \n \n M. Uppaluri, A. Subramaniam, L. Mishra, V. Viswanathan, and V. R. Subramanian, J. Electrochem. Soc., 167, 160547 (2020).\n \n \n L. Mishra, A. Subramaniam, T. Jang, K. Shah, M. Uppaluri, S. A. Roberts and V. R. Subramanian, J. Electrochem. Soc., 168, 092502 (2021).\n \n \n","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2022-01461948mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries are drawing attention as a next generation of lithium-ion batteries due to their advantage of high theoretical capacity. However, the widespread application and commercialization of this potential battery technology is not achieved yet due to the poor cyclability and safety issues. Despite the recent progress1-2 and development of numerous strategies for the long and durable cyclability1-4, the analysis of lithium metal evolution still depends on the experimental approach in macroscale or molecular simulation in nanoscale5. In order to understand and optimize the system-level response of these lithium metal batteries, an accurate and robust modeling and simulation framework with a coupled macro and nanoscale approach is essential. In the previous reports, we have discussed simple 1D model to study stripping and plating of the lithium metal electrode and obtaining the characteristic inverse signatures in the cell voltage6, and appropriate boundary conditions ensuring mass conservation in a 2D model7. In this work, a 2D separator domain with initial surface morphology at the lithium metal electrode is considered for diffusion and migration of the lithium-ions in the domain along with reaction kinetics at the surface. The model is based on the mass and charge conservation in the system that captures the morphological evolution at the lithium metal electrode along the charge/discharge of the battery during cycling. This model is solved with in-house schemes based on spatial, temporal discretization schemes and coordinate transformation. The results show that the local current distribution at the electrode surface affects the rate and shape of the growth of the lithium metal at the negative electrode. The study has been performed for a wide range of geometric, kinetic and transport parameters. The proposed in-house model efficiently reaches a converged results compared with other numerical schemes both in speed and accuracy, and easily adaptive to optimizing tools towards cell design. Acknowledgments This research was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy (DoE) through the Advanced Battery Materials Research Program (Battery500 Consortium). References K. N. Wood, E. Kazyak, A. F. Chadwick, K. H. Chen, J. G. Zhang, K. Thornton, and N. P. Dasgupta, ACS Cent. Sci., 2, 790-801 (2016). A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui., Nano Lett., 17(2), 1132-1139 (2017). J. Liu, Z. Bao, Y. Cui, E. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X. Yang, and J. Zhang, Nat. Nanotechnol., 14 180-186 (2019). Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang, S. Kim, J. Lai, X. Kong, J. Qin, Y. Cui and Z. Bao, J. Am. Chem. Soc., 143(44), 18703-18713 (2021) S. Angarita-Gomez and P. B. Balbuena, Phys. Chem. Chem. Phys., 22, 21369-21382, (2020) M. Uppaluri, A. Subramaniam, L. Mishra, V. Viswanathan, and V. R. Subramanian, J. Electrochem. Soc., 167, 160547 (2020). L. Mishra, A. Subramaniam, T. Jang, K. Shah, M. Uppaluri, S. A. Roberts and V. R. Subramanian, J. Electrochem. Soc., 168, 092502 (2021).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂金属电池电沉积的高效建模框架
锂金属电池因具有理论容量高的优点,作为下一代锂离子电池备受关注。然而,由于可循环性差和安全性问题,这种潜在的电池技术尚未实现广泛应用和商业化。尽管最近取得了进展1-2,并且开发了许多长期和持久循环性的策略1-4,但金属锂的演化分析仍然依赖于宏观尺度的实验方法或纳米尺度的分子模拟5。为了理解和优化这些锂金属电池的系统级响应,一个精确和鲁棒的建模和仿真框架与耦合的宏观和纳米尺度的方法是必不可少的。在之前的报告中,我们讨论了简单的一维模型来研究锂金属电极的剥离和电镀,并获得了电池电压下的特征逆特征6,以及在二维模型中确保质量守恒的适当边界条件7。在这项工作中,考虑了锂金属电极上具有初始表面形貌的二维分离器域,用于锂离子在该域内的扩散和迁移以及表面的反应动力学。该模型基于系统中的质量和电荷守恒,该模型捕获了锂金属电极在循环过程中沿电池充放电的形态演变。该模型采用基于空间、时间离散化和坐标变换的内部方案进行求解。结果表明,电极表面的局部电流分布影响了负极处金属锂的生长速度和形状。该研究已在广泛的几何、动力学和输运参数下进行。与其他数值格式相比,该模型在速度和精度上都能有效地达到收敛结果,并且易于适应针对单元设计的优化工具。本研究由美国能源部汽车技术办公室能源效率和可再生能源助理部长通过先进电池材料研究计划(Battery500 Consortium)支持。参考文献K. N. Wood, E. Kazyak, A. F. Chadwick, K. H. Chen, J. G. Zhang, K. Thornton, N. P. Dasgupta。中文信息学报,2,790-801(2016)。裴安,郑国强,石峰,李勇,崔勇。纳诺·莱特。浙江农业学报,17(2),1132-1139(2017)。刘杰,鲍志强,崔勇,E. Dufek, J. B. Goodenough, P. Khalifah,李强,B. Liaw, P. Liu, A. Manthiram, Y. S.孟,V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham,肖杰,徐伟,杨杰,杨晓旭,张杰,Nat纳米技术。, 14 180-186(2019)。陈勇,余志强,P. Rudnicki,龚洪,黄志强,Kim S.,赖俊,孔晓刚,秦军,崔勇,鲍志强,J. Am。化学。Soc。科学通报,143(44),18703-18713(2021)。化学。化学。理论物理。杨建军,刘建军,刘建军,等。电化学技术的发展与发展,(2020)Soc。中文信息学报,2016,37(2020)。L. Mishra, A. Subramanian, T. Jang, K. Shah, M. Uppaluri, S. A. Roberts和V. R. Subramanian, J. Electrochem。Soc。中文信息学报,168,092502(2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redox Tolerant Solid Oxide Electrolysis Cathode for CO2 and Steam (Keynote) Releasing the Bubbles: Efficient Phase Separation in (Photo-)Electrochemical Devices in Microgravity Environment Phase Stability of SrTi1-XFexO3- δ Under Solid Oxide Cell Fuel-Electrode Conditions: Implications for Related Exsolution Electrode Materials Long-Term Stability of Perovskite-Based Fuel Electrode Material Sr2Fe2-XMoxO6-δ – GDC for Enhanced High-Temperature Steam and CO2 Electrolysis GC:BiFE As an Useful Tool for the Quantification of Health Harmful Organic Compounds in Artisanal Spiritus Beverages Via ADSV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1