{"title":"Detecting tapping motion on the side of mobile devices by probabilistically combining hand postures","authors":"William McGrath, Yang Li","doi":"10.1145/2642918.2647363","DOIUrl":null,"url":null,"abstract":"We contribute a novel method for detecting finger taps on the different sides of a smartphone, using the built-in motion sensors of the device. In particular, we discuss new features and algorithms that infer side taps by probabilistically combining estimates of tap location and the hand pose--the hand holding the device. Based on a dataset collected from 9 participants, our method achieved 97.3% precision and 98.4% recall on tap event detection against ambient motion. For detecting single-tap locations, our method outperformed an approach that uses inferred hand postures deterministically by 3% and an approach that does not use hand posture inference by 17%. For inferring the location of two consecutive side taps from the same direction, our method outperformed the two baseline approaches by 6% and 17% respectively. We discuss our insights into designing the detection algorithm and the implication on side tap-based interaction behaviors.","PeriodicalId":20543,"journal":{"name":"Proceedings of the 27th annual ACM symposium on User interface software and technology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual ACM symposium on User interface software and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2642918.2647363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
We contribute a novel method for detecting finger taps on the different sides of a smartphone, using the built-in motion sensors of the device. In particular, we discuss new features and algorithms that infer side taps by probabilistically combining estimates of tap location and the hand pose--the hand holding the device. Based on a dataset collected from 9 participants, our method achieved 97.3% precision and 98.4% recall on tap event detection against ambient motion. For detecting single-tap locations, our method outperformed an approach that uses inferred hand postures deterministically by 3% and an approach that does not use hand posture inference by 17%. For inferring the location of two consecutive side taps from the same direction, our method outperformed the two baseline approaches by 6% and 17% respectively. We discuss our insights into designing the detection algorithm and the implication on side tap-based interaction behaviors.