DAVD-Net: Deep Audio-Aided Video Decompression of Talking Heads

Xi Zhang, Xiaolin Wu, Xinliang Zhai, Xianye Ben, Chengjie Tu
{"title":"DAVD-Net: Deep Audio-Aided Video Decompression of Talking Heads","authors":"Xi Zhang, Xiaolin Wu, Xinliang Zhai, Xianye Ben, Chengjie Tu","doi":"10.1109/CVPR42600.2020.01235","DOIUrl":null,"url":null,"abstract":"Close-up talking heads are among the most common and salient object in video contents, such as face-to-face conversations in social media, teleconferences, news broadcasting, talk shows, etc. Due to the high sensitivity of human visual system to faces, compression distortions in talking heads videos are highly visible and annoying. To address this problem, we present a novel deep convolutional neural network (DCNN) method for very low bit rate video reconstruction of talking heads. The key innovation is a new DCNN architecture that can exploit the audio-video correlations to repair compression defects in the face region. We further improve reconstruction quality by embedding into our DCNN the encoder information of the video compression standards and introducing a constraining projection module in the network. Extensive experiments demonstrate that the proposed DCNN method outperforms the existing state-of-the-art methods on videos of talking heads.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"18 1","pages":"12332-12341"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.01235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Close-up talking heads are among the most common and salient object in video contents, such as face-to-face conversations in social media, teleconferences, news broadcasting, talk shows, etc. Due to the high sensitivity of human visual system to faces, compression distortions in talking heads videos are highly visible and annoying. To address this problem, we present a novel deep convolutional neural network (DCNN) method for very low bit rate video reconstruction of talking heads. The key innovation is a new DCNN architecture that can exploit the audio-video correlations to repair compression defects in the face region. We further improve reconstruction quality by embedding into our DCNN the encoder information of the video compression standards and introducing a constraining projection module in the network. Extensive experiments demonstrate that the proposed DCNN method outperforms the existing state-of-the-art methods on videos of talking heads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深音频辅助视频解压缩的说话头
特写说话头是视频内容中最常见和最突出的对象之一,例如社交媒体中的面对面交谈、电话会议、新闻广播、谈话节目等。由于人类视觉系统对人脸的高度敏感性,说话头视频中的压缩失真非常明显,令人讨厌。为了解决这个问题,我们提出了一种新的深度卷积神经网络(DCNN)方法,用于非常低比特率的谈话头视频重建。关键的创新是一种新的DCNN架构,它可以利用音视频相关性来修复面部区域的压缩缺陷。通过在DCNN中嵌入视频压缩标准的编码器信息,并在网络中引入约束投影模块,进一步提高了重建质量。大量的实验表明,所提出的DCNN方法在说话头视频上优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1