Hierarchical Refined Composite Multi-Scale Fractal Dimension and Its Application in Feature Extraction of Ship-Radiated Noise

Remote. Sens. Pub Date : 2023-07-05 DOI:10.3390/rs15133406
Yuxing Li, Lili Liang, Shuai-Shuai Zhang
{"title":"Hierarchical Refined Composite Multi-Scale Fractal Dimension and Its Application in Feature Extraction of Ship-Radiated Noise","authors":"Yuxing Li, Lili Liang, Shuai-Shuai Zhang","doi":"10.3390/rs15133406","DOIUrl":null,"url":null,"abstract":"The fractal dimension (FD) is a classical nonlinear dynamic index that can effectively reflect the dynamic transformation of a signal. However, FD can only reflect signal information of a single scale in the whole frequency band. To solve this problem, we combine refined composite multi-scale processing with FD and propose the refined composite multi-scale FD (RCMFD), which can reflect the information of signals at a multi-scale. Furthermore, hierarchical RCMFD (HRCMFD) is proposed by introducing hierarchical analysis, which successfully represents the multi-scale information of signals in each sub-frequency band. Moreover, two ship-radiated noise (SRN) multi-feature extraction methods based on RCMFD and HRCMFD are proposed. The simulation results indicate that RCMFD and HRCMFD can effectively discriminate different simulated signals. The experimental results show that the proposed two-feature extraction methods are more effective for distinguishing six types of SRN than other feature-extraction methods. The HRCMFD-based multi-feature extraction method has the best performance, and the recognition rate reaches 99.7% under the combination of five features.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fractal dimension (FD) is a classical nonlinear dynamic index that can effectively reflect the dynamic transformation of a signal. However, FD can only reflect signal information of a single scale in the whole frequency band. To solve this problem, we combine refined composite multi-scale processing with FD and propose the refined composite multi-scale FD (RCMFD), which can reflect the information of signals at a multi-scale. Furthermore, hierarchical RCMFD (HRCMFD) is proposed by introducing hierarchical analysis, which successfully represents the multi-scale information of signals in each sub-frequency band. Moreover, two ship-radiated noise (SRN) multi-feature extraction methods based on RCMFD and HRCMFD are proposed. The simulation results indicate that RCMFD and HRCMFD can effectively discriminate different simulated signals. The experimental results show that the proposed two-feature extraction methods are more effective for distinguishing six types of SRN than other feature-extraction methods. The HRCMFD-based multi-feature extraction method has the best performance, and the recognition rate reaches 99.7% under the combination of five features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层次精细复合多尺度分形维数及其在舰船辐射噪声特征提取中的应用
分形维数(FD)是一种经典的非线性动态指标,可以有效地反映信号的动态变化。但是,FD在整个频带内只能反映单一尺度的信号信息。为了解决这一问题,我们将精细复合多尺度处理与FD相结合,提出了能够在多尺度上反映信号信息的精细复合多尺度FD (RCMFD)。在此基础上,通过引入层次分析,提出了分层RCMFD (HRCMFD),成功地表示了各子频段信号的多尺度信息。在此基础上,提出了基于RCMFD和HRCMFD的舰船辐射噪声多特征提取方法。仿真结果表明,RCMFD和HRCMFD能有效区分不同的仿真信号。实验结果表明,与其他特征提取方法相比,本文提出的双特征提取方法能够更有效地识别6种类型的SRN。基于hrcmfd的多特征提取方法表现最好,5个特征组合下的识别率达到99.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of Different Factors on Gravity Wave Activity in the Lower Stratosphere of the Indian Region Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985 Investigation of Light-Scattering Properties of Non-Spherical Sea Salt Aerosol Particles at Varying Levels of Relative Humidity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1