{"title":"A Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum","authors":"Ce Jin, Hongxun Wu","doi":"10.4230/OASIcs.SOSA.2019.17","DOIUrl":null,"url":null,"abstract":"Given a multiset S of n positive integers and a target integer t, the Subset Sum problem asks to determine whether there exists a subset of S that sums up to t. The current best deterministic algorithm, by Koiliaris and Xu [SODA'17], runs in O~(sqrt{n}t) time, where O~ hides poly-logarithm factors. Bringmann [SODA'17] later gave a randomized O~(n + t) time algorithm using two-stage color-coding. The O~(n+t) running time is believed to be near-optimal.\nIn this paper, we present a simple and elegant randomized algorithm for Subset Sum in O~(n + t) time. Our new algorithm actually solves its counting version modulo prime p>t, by manipulating generating functions using FFT.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"34 1","pages":"17:1-17:6"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.SOSA.2019.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Given a multiset S of n positive integers and a target integer t, the Subset Sum problem asks to determine whether there exists a subset of S that sums up to t. The current best deterministic algorithm, by Koiliaris and Xu [SODA'17], runs in O~(sqrt{n}t) time, where O~ hides poly-logarithm factors. Bringmann [SODA'17] later gave a randomized O~(n + t) time algorithm using two-stage color-coding. The O~(n+t) running time is believed to be near-optimal.
In this paper, we present a simple and elegant randomized algorithm for Subset Sum in O~(n + t) time. Our new algorithm actually solves its counting version modulo prime p>t, by manipulating generating functions using FFT.