Learning motion manifolds with convolutional autoencoders

Daniel Holden, Jun Saito, T. Komura, T. Joyce
{"title":"Learning motion manifolds with convolutional autoencoders","authors":"Daniel Holden, Jun Saito, T. Komura, T. Joyce","doi":"10.1145/2820903.2820918","DOIUrl":null,"url":null,"abstract":"We present a technique for learning a manifold of human motion data using Convolutional Autoencoders. Our approach is capable of learning a manifold on the complete CMU database of human motion. This manifold can be treated as a prior probability distribution over human motion data, which has many applications in animation research, including projecting invalid or corrupt motion onto the manifold for removing error, computing similarity between motions using geodesic distance along the manifold, and interpolation of motion along the manifold for avoiding blending artefacts.","PeriodicalId":21720,"journal":{"name":"SIGGRAPH Asia 2015 Technical Briefs","volume":"58 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"253","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2015 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2820903.2820918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 253

Abstract

We present a technique for learning a manifold of human motion data using Convolutional Autoencoders. Our approach is capable of learning a manifold on the complete CMU database of human motion. This manifold can be treated as a prior probability distribution over human motion data, which has many applications in animation research, including projecting invalid or corrupt motion onto the manifold for removing error, computing similarity between motions using geodesic distance along the manifold, and interpolation of motion along the manifold for avoiding blending artefacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用卷积自编码器学习运动流形
我们提出了一种使用卷积自编码器学习多种人体运动数据的技术。我们的方法能够在完整的CMU人体运动数据库上学习流形。该流形可以被视为人类运动数据的先验概率分布,在动画研究中有许多应用,包括将无效或损坏的运动投影到流形上以消除误差,使用沿流形的测地线距离计算运动之间的相似性,以及沿流形的运动插值以避免混合伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depth-aware coherent line drawings Illustration2Vec: a semantic vector representation of illustrations A linear blending scheme for rigid and non-rigid deformations Coherent and importance sampled LVC BDPT on the GPU Depth-aware patch-based image disocclusion for virtual view synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1