Multi-contact locomotion using a contact graph with feasibility predictors

Changgu Kang, Sung-Hee Lee
{"title":"Multi-contact locomotion using a contact graph with feasibility predictors","authors":"Changgu Kang, Sung-Hee Lee","doi":"10.1145/3072959.3126849","DOIUrl":null,"url":null,"abstract":"Multi-contact locomotion that uses both the hands and feet in a complex environment remains a challenging problem in computer animation. To address this problem, we present a contact graph, which is a motion graph augmented by learned feasibility predictors, namely contact spaces and an occupancy estimator, for a motion clip in each graph node. By estimating the feasibilities of candidate contact points that can be reached by modifying a motion clip, the predictors allow us to find contact points that are likely to be valid and natural before attempting to generate the actual motion for the contact points. The contact graph thus enables the efficient generation of multi-contact motion in two steps: planning contact points to the goal and then generating the whole-body motion. We demonstrate the effectiveness of our method by creating several climbing motions in complex and cluttered environments by using only a small number of motion samples.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3072959.3126849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Multi-contact locomotion that uses both the hands and feet in a complex environment remains a challenging problem in computer animation. To address this problem, we present a contact graph, which is a motion graph augmented by learned feasibility predictors, namely contact spaces and an occupancy estimator, for a motion clip in each graph node. By estimating the feasibilities of candidate contact points that can be reached by modifying a motion clip, the predictors allow us to find contact points that are likely to be valid and natural before attempting to generate the actual motion for the contact points. The contact graph thus enables the efficient generation of multi-contact motion in two steps: planning contact points to the goal and then generating the whole-body motion. We demonstrate the effectiveness of our method by creating several climbing motions in complex and cluttered environments by using only a small number of motion samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可行性预测的接触图的多接触运动
在复杂的环境中使用手和脚的多接触运动仍然是计算机动画中的一个具有挑战性的问题。为了解决这个问题,我们提出了一个接触图,它是一个由学习到的可行性预测器(即接触空间和占用估计器)增强的运动图,用于每个图节点的运动剪辑。通过估计通过修改运动剪辑可以达到的候选接触点的可行性,预测器允许我们在尝试为接触点生成实际运动之前找到可能有效和自然的接触点。因此,接触图可以通过两个步骤高效地生成多接触运动:规划目标接触点,然后生成全身运动。我们通过仅使用少量运动样本在复杂和混乱的环境中创建几个攀登运动来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LuisaRender: A High-Performance Rendering Framework with Layered and Unified Interfaces on Stream Architectures BoolSurf: Boolean Operations on Surfaces SkinMixer: Blending 3D Animated Models PopStage: The Generation of Stage Cross-Editing Video Based on Spatio-Temporal Matching QuadStream: A Quad-Based Scene Streaming Architecture for Novel Viewpoint Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1