Najmeh Fahham, F. Zandi, M. Ghahremani, S. Ostad, B. Vaziri, Seyed Sadegh Shahraeini, S. Sardari
{"title":"Unraveling Potential Candidate Targets Associated with Expression of p16INK4a or p16 Truncated Fragment by Comparative Proteomics Analysis","authors":"Najmeh Fahham, F. Zandi, M. Ghahremani, S. Ostad, B. Vaziri, Seyed Sadegh Shahraeini, S. Sardari","doi":"10.2174/1570164618666210728121529","DOIUrl":null,"url":null,"abstract":"\n\nP16 is a tumor suppressor protein that is significantly involved in cycle regulation through the reduction of cell progression from G1 phase to S phase via CDK-cyclin D/p16INK4a/pRb/E2F cascade. The minimum functional domain of p16 has been uncovered that may function comparable to wild type p16.\n\n\n\nTo expand the knowledge on molecules and mechanisms by which p16 or p1666-156 fragment suppresses human fibrosarcoma cell line growth, differential proteome profiles of fibrosarcoma cells following p16 full length or the functional domain overexpression were analyzed.\n\n\n\nFollowing transfecting HT-1080 fibrosarcoma cells with p16 full length, p1666-156 truncated form, and pcDNA3.1 empty vector, protein extract of each sample was harvested and clarified by centrifugation, and then the protein content was determined via Bradford assay. All protein extract of each sample was analyzed by two-dimensional gel electrophoresis. Immunoblot analysis was performed as further validation of the expression status of identified proteins.\n\n\n\nExpression of p16 or p1666-156 fragment could induce mostly common alterations (up/down-regulation) of proteome profile of HT-1080 cells. Mass spectrometry identification of the differentially expressed protein spots revealed several proteins that were grouped in functional clusters, including cell cycle regulation and proliferation, cell migration and structure, oxidative stress, protein metabolism, epigenetic regulation, and signal transduction. \n\n\n\nThe minimum functional domain of p16 could act in the same way as p16 full length. Also, these new findings can significantly enrich the understanding of p16 growth-suppressive function at the molecular level by the introduction of potential candidate targets for new treatment strategies. Furthermore, the present study provides strong evidence on the functional efficacy of the identified fragment of p16 for further attempts toward peptidomimetic drug design or gene transfer to block cancer cell proliferation.\n","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":"15 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1570164618666210728121529","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
P16 is a tumor suppressor protein that is significantly involved in cycle regulation through the reduction of cell progression from G1 phase to S phase via CDK-cyclin D/p16INK4a/pRb/E2F cascade. The minimum functional domain of p16 has been uncovered that may function comparable to wild type p16.
To expand the knowledge on molecules and mechanisms by which p16 or p1666-156 fragment suppresses human fibrosarcoma cell line growth, differential proteome profiles of fibrosarcoma cells following p16 full length or the functional domain overexpression were analyzed.
Following transfecting HT-1080 fibrosarcoma cells with p16 full length, p1666-156 truncated form, and pcDNA3.1 empty vector, protein extract of each sample was harvested and clarified by centrifugation, and then the protein content was determined via Bradford assay. All protein extract of each sample was analyzed by two-dimensional gel electrophoresis. Immunoblot analysis was performed as further validation of the expression status of identified proteins.
Expression of p16 or p1666-156 fragment could induce mostly common alterations (up/down-regulation) of proteome profile of HT-1080 cells. Mass spectrometry identification of the differentially expressed protein spots revealed several proteins that were grouped in functional clusters, including cell cycle regulation and proliferation, cell migration and structure, oxidative stress, protein metabolism, epigenetic regulation, and signal transduction.
The minimum functional domain of p16 could act in the same way as p16 full length. Also, these new findings can significantly enrich the understanding of p16 growth-suppressive function at the molecular level by the introduction of potential candidate targets for new treatment strategies. Furthermore, the present study provides strong evidence on the functional efficacy of the identified fragment of p16 for further attempts toward peptidomimetic drug design or gene transfer to block cancer cell proliferation.
Current ProteomicsBIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍:
Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to:
Protein separation and characterization techniques
2-D gel electrophoresis and image analysis
Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching
Determination of co-translational and post- translational modification of proteins
Protein/peptide microarrays
Biomolecular interaction analysis
Analysis of protein complexes
Yeast two-hybrid projects
Protein-protein interaction (protein interactome) pathways and cell signaling networks
Systems biology
Proteome informatics (bioinformatics)
Knowledge integration and management tools
High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography)
High-throughput computational methods for protein 3-D structure as well as function determination
Robotics, nanotechnology, and microfluidics.