Masaki Hayashi, Kyoko Oshima, Masamoto Tanabiki, Y. Aoki
{"title":"Lower Body Pose Estimation in Team Sports Videos Using Label-Grid Classifier Integrated with Tracking-by-Detection","authors":"Masaki Hayashi, Kyoko Oshima, Masamoto Tanabiki, Y. Aoki","doi":"10.2197/ipsjtcva.7.18","DOIUrl":null,"url":null,"abstract":"We propose a human lower body pose estimation method for team sport videos, which is integrated with tracking-by-detection technique. The proposed Label-Grid classifier uses the grid histogram feature of the tracked window from the tracker and estimates the lower body joint position of a specific joint as the class label of the multiclass classifiers, whose classes correspond to the candidate joint positions on the grid. By learning various types of player poses and scales of Histogram-of-Oriented Gradients features within one team sport, our method can estimate poses even if the players are motion-blurred and low-resolution images without requiring a motion-model regression or part-based model, which are popular vision-based human pose estimation techniques. Moreover, our method can estimate poses with part-occlusions and non-upright side poses, which part-detector-based methods find it difficult to estimate with only one model. Experimental results show the advantage of our method for side running poses and non-walking poses. The results also show the robustness of our method for a large variety of poses and scales in team sports videos.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"14 1","pages":"18-30"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
We propose a human lower body pose estimation method for team sport videos, which is integrated with tracking-by-detection technique. The proposed Label-Grid classifier uses the grid histogram feature of the tracked window from the tracker and estimates the lower body joint position of a specific joint as the class label of the multiclass classifiers, whose classes correspond to the candidate joint positions on the grid. By learning various types of player poses and scales of Histogram-of-Oriented Gradients features within one team sport, our method can estimate poses even if the players are motion-blurred and low-resolution images without requiring a motion-model regression or part-based model, which are popular vision-based human pose estimation techniques. Moreover, our method can estimate poses with part-occlusions and non-upright side poses, which part-detector-based methods find it difficult to estimate with only one model. Experimental results show the advantage of our method for side running poses and non-walking poses. The results also show the robustness of our method for a large variety of poses and scales in team sports videos.