Malevolent Node Detection Based on Network Parameters Mining in Wireless Sensor Networks

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-09-01 DOI:10.4018/IJDCF.20210901.OA8
R. Sunitha, J. Chandrika
{"title":"Malevolent Node Detection Based on Network Parameters Mining in Wireless Sensor Networks","authors":"R. Sunitha, J. Chandrika","doi":"10.4018/IJDCF.20210901.OA8","DOIUrl":null,"url":null,"abstract":"The exponential growth of the internet of things and united applications have renewed the scholarly world to grow progressively proficient routing strategies. Quality of service (QoS) and reduced power consumption are the major requirements for effective data transmission. The larger part of the applications nowadays including internet of things (IoT) communication request power effective and QoS-driven WSN configuration. In this paper, an exceptionally strong and effective evolutionary computing allied WSN routing convention is designed for QoS and power effectiveness. The proposed routing convention includes proficient capacity called network condition-based malicious node detection. It adventures or mines the dynamic node/network parameters to recognize malignant nodes. Experimentation is done using network simulator tool NS2. Results ensure that the proposed routing model accomplishes higher throughput, low energy utilization, and low delay that sustains its suitability for real-time WSN.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20210901.OA8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth of the internet of things and united applications have renewed the scholarly world to grow progressively proficient routing strategies. Quality of service (QoS) and reduced power consumption are the major requirements for effective data transmission. The larger part of the applications nowadays including internet of things (IoT) communication request power effective and QoS-driven WSN configuration. In this paper, an exceptionally strong and effective evolutionary computing allied WSN routing convention is designed for QoS and power effectiveness. The proposed routing convention includes proficient capacity called network condition-based malicious node detection. It adventures or mines the dynamic node/network parameters to recognize malignant nodes. Experimentation is done using network simulator tool NS2. Results ensure that the proposed routing model accomplishes higher throughput, low energy utilization, and low delay that sustains its suitability for real-time WSN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网络参数挖掘的无线传感器网络恶意节点检测
物联网和联合应用的指数级增长已经更新了学术界对日益精通的路由策略的需求。服务质量(QoS)和降低功耗是有效传输数据的主要要求。目前包括物联网(IoT)通信在内的大部分应用都要求功率有效和qos驱动的WSN配置。本文针对无线传感器网络的QoS和功率效率,设计了一种非常强大和有效的进化计算联合路由协议。所提出的路由约定包括称为基于网络状态的恶意节点检测的熟练能力。它冒险或挖掘动态节点/网络参数来识别恶性节点。实验使用网络模拟器工具NS2完成。结果表明,所提出的路由模型具有较高的吞吐量、较低的能量利用率和较低的延迟,保持了其对实时WSN的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1