DeepBEV: A Conditional Adversarial Network for Bird's Eye View Generation

Helmi Fraser, Sen Wang
{"title":"DeepBEV: A Conditional Adversarial Network for Bird's Eye View Generation","authors":"Helmi Fraser, Sen Wang","doi":"10.1109/ICPR48806.2021.9412516","DOIUrl":null,"url":null,"abstract":"Obtaining a meaningful, interpretable yet compact representation of the immediate surroundings of an autonomous vehicle is paramount for effective operation as well as safety. This paper proposes a solution to this by representing semantically important objects from a top-down, ego-centric bird's eye view. The novelty in this work is from formulating this problem as an adversarial learning task, tasking a generator model to produce bird's eye view representations which are plausible enough to be mistaken as a ground truth sample. This is achieved by using a Wasserstein Generative Adversarial Network based model conditioned on object detections from monocular RGB images and the corresponding bounding boxes. Extensive experiments show our model is more robust to novel data compared to strictly supervised benchmark models, while being a fraction of the size of the next best.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"1 1","pages":"5581-5586"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Obtaining a meaningful, interpretable yet compact representation of the immediate surroundings of an autonomous vehicle is paramount for effective operation as well as safety. This paper proposes a solution to this by representing semantically important objects from a top-down, ego-centric bird's eye view. The novelty in this work is from formulating this problem as an adversarial learning task, tasking a generator model to produce bird's eye view representations which are plausible enough to be mistaken as a ground truth sample. This is achieved by using a Wasserstein Generative Adversarial Network based model conditioned on object detections from monocular RGB images and the corresponding bounding boxes. Extensive experiments show our model is more robust to novel data compared to strictly supervised benchmark models, while being a fraction of the size of the next best.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepBEV:一种用于鸟瞰生成的条件对抗网络
获得自动驾驶汽车周围环境的有意义的、可解释的、紧凑的表示对于有效运行和安全至关重要。本文提出了一种解决方案,通过自上而下、以自我为中心的鸟瞰图来表示语义上重要的对象。这项工作的新颖之处在于将这个问题表述为一个对抗性学习任务,分配一个生成器模型来生成鸟瞰图表示,这些表示似乎足够可信,可以被误认为是一个基本的真实样本。这是通过使用基于Wasserstein生成对抗网络的模型来实现的,该模型以单目RGB图像和相应的边界框的对象检测为条件。大量的实验表明,与严格监督的基准模型相比,我们的模型对新数据的鲁棒性更强,而规模只是次优模型的一小部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1