Mathematical models for the cutting stock with limited open stacks problem

Gabriel Gazzinelli Guimarães, K. C. Poldi
{"title":"Mathematical models for the cutting stock with limited open stacks problem","authors":"Gabriel Gazzinelli Guimarães, K. C. Poldi","doi":"10.1051/ro/2023079","DOIUrl":null,"url":null,"abstract":"This research is focused on solving the Cutting Stock with Limited Open Stacks Problem (CS-LOSP). The CS-LOSP is an optimization problem which consists of the classical Cutting Stock Problem (CSP) paired with the additional constraint that the maximum number of open stacks from the sequencing of the cutting patterns obtained from the CSP solution is equal or lower than a preset limit. Despite being a problem with great practical importance, the literature lacks models for this problem, and only one-dimensional problems are addressed. In this paper, we propose two integer linear programming formulations for the CS-LOSP that are valid for solving instances of the CSP of any dimension. In order to eliminate symmetrical solutions to the problem, the proposed formulations sequence sets of cutting patterns instead of sequencing the cutting patterns individually, thus, the search space for solutions is reduced. A set of randomly generated instances for the two-dimensional problem is used to perform computational experiments in order to validate the proposed mathematical formulations.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research is focused on solving the Cutting Stock with Limited Open Stacks Problem (CS-LOSP). The CS-LOSP is an optimization problem which consists of the classical Cutting Stock Problem (CSP) paired with the additional constraint that the maximum number of open stacks from the sequencing of the cutting patterns obtained from the CSP solution is equal or lower than a preset limit. Despite being a problem with great practical importance, the literature lacks models for this problem, and only one-dimensional problems are addressed. In this paper, we propose two integer linear programming formulations for the CS-LOSP that are valid for solving instances of the CSP of any dimension. In order to eliminate symmetrical solutions to the problem, the proposed formulations sequence sets of cutting patterns instead of sequencing the cutting patterns individually, thus, the search space for solutions is reduced. A set of randomly generated instances for the two-dimensional problem is used to perform computational experiments in order to validate the proposed mathematical formulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限开堆切削料问题的数学模型
本文主要研究了有限开堆下料问题。CS-LOSP是一个优化问题,它是由经典的切割库存问题(CSP)和由CSP解得到的切割模式排序的最大开堆数等于或低于预设限制的附加约束组成的。尽管这是一个具有重大现实意义的问题,但文献中缺乏针对该问题的模型,并且只讨论了一维问题。在本文中,我们提出了两个整数线性规划的CS-LOSP公式,它们适用于求解任意维数的CSP实例。为了消除问题的对称解,提出的公式对切割模式集合进行排序,而不是对切割模式单独排序,从而减少了解的搜索空间。为了验证所提出的数学公式,采用一组随机生成的二维问题实例进行了计算实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to: On interval-valued bilevel optimization problems using upper convexificators On the conformability of regular line graphs A new modified bat algorithm for global optimization A multi-stage stochastic programming approach for an inventory-routing problem considering life cycle On characterizations of solution sets of interval-valued quasiconvex programming problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1