Crack propagation in disordered materials: how to decipher fracture surfaces

L. Ponson, I. Procaccia, Michel Rosso, Stéphane Roux
{"title":"Crack propagation in disordered materials: how to decipher fracture surfaces","authors":"L. Ponson, I. Procaccia, Michel Rosso, Stéphane Roux","doi":"10.1051/ANPHYS:2008044","DOIUrl":null,"url":null,"abstract":"For a half-century, engineers know how to describe and predict the propagation of a crack in a model elastic homogeneous medium. The case of real materials is much more complex. Indeed, we do not know how to relate their lifetime or their resistance to their microstructure. To achieve such a prediction, understanding the role of the microstructural disorder on the behavior of a crack is determinant. Fracture surfaces represent a promising field of investigation to address this question. From the study of various disordered materials, we propose a statistical description of their roughness and determine to which extent their properties are dependent of the material. We show that fracture surfaces display an anisotropic scale invariant geometry characterized by two universal exponents. Glass ceramics is then studied because its microstructure can be tuned in a controlled manner. Their fracture surfaces display the same general anisotropic properties but with surprisingly low exponents independent of the detail of the ceramics microstructure. This suggests the existence of a second universality class in failure problems. Using finally theoretical tools from out-of-equilibrium statistical physics and fracture mechanics, we relate the statistical properties of fracture surfaces with the mechanisms occurring at the microscopic scale during the failure of a material. In particular, we show that the first class of fracture surfaces results from a failure involving damage processes while the second one results from a perfectly brittle failure.","PeriodicalId":50779,"journal":{"name":"Annales De Physique","volume":"19 1","pages":"1-120"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ANPHYS:2008044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

For a half-century, engineers know how to describe and predict the propagation of a crack in a model elastic homogeneous medium. The case of real materials is much more complex. Indeed, we do not know how to relate their lifetime or their resistance to their microstructure. To achieve such a prediction, understanding the role of the microstructural disorder on the behavior of a crack is determinant. Fracture surfaces represent a promising field of investigation to address this question. From the study of various disordered materials, we propose a statistical description of their roughness and determine to which extent their properties are dependent of the material. We show that fracture surfaces display an anisotropic scale invariant geometry characterized by two universal exponents. Glass ceramics is then studied because its microstructure can be tuned in a controlled manner. Their fracture surfaces display the same general anisotropic properties but with surprisingly low exponents independent of the detail of the ceramics microstructure. This suggests the existence of a second universality class in failure problems. Using finally theoretical tools from out-of-equilibrium statistical physics and fracture mechanics, we relate the statistical properties of fracture surfaces with the mechanisms occurring at the microscopic scale during the failure of a material. In particular, we show that the first class of fracture surfaces results from a failure involving damage processes while the second one results from a perfectly brittle failure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无序材料中的裂纹扩展:如何破译断裂面
半个世纪以来,工程师们知道如何描述和预测模型弹性均匀介质中裂纹的扩展。真实材料的情况要复杂得多。事实上,我们不知道如何将它们的寿命或电阻与它们的微观结构联系起来。为了实现这样的预测,理解微观结构紊乱对裂纹行为的作用是决定性的。裂缝表面是解决这一问题的一个很有前途的研究领域。从对各种无序材料的研究中,我们提出了对其粗糙度的统计描述,并确定了它们的性质在多大程度上取决于材料。结果表明,裂缝表面呈现出由两个普适指数表征的各向异性尺度不变几何形状。然后研究玻璃陶瓷,因为它的微观结构可以以一种可控的方式调谐。它们的断口表面显示出相同的一般各向异性,但令人惊讶的是,与陶瓷微观结构细节无关的指数很低。这表明在失效问题中存在第二个普适性类。最后,利用非平衡统计物理和断裂力学的理论工具,我们将断裂表面的统计特性与材料失效过程中微观尺度上发生的机制联系起来。特别是,我们表明第一类断裂面是由涉及损伤过程的破坏造成的,而第二类是由完全脆性破坏造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annales De Physique
Annales De Physique 物理-物理:综合
自引率
0.00%
发文量
0
期刊最新文献
Intrication de deux atomes en utilisant le blocage de Rydberg Les métamatériaux, des micro-ondes à l’optique : théorie et applications Effet de l'interaction Coulombienne sur la localisation d'Anderson dans le gaz bidimensionnel d'électrons Cryogenic AFM-STM for mesoscopic physics Solid-state ring laser gyroscope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1