F. De Nicola, S. Sarti, Bing Lu, L. Qu, Zhipan Zhang, A. Marcelli, S. Lupi
{"title":"Graphene Aerogels for Ultrabroadband Thermoacoustics","authors":"F. De Nicola, S. Sarti, Bing Lu, L. Qu, Zhipan Zhang, A. Marcelli, S. Lupi","doi":"10.1103/PhysRevApplied.14.024022","DOIUrl":null,"url":null,"abstract":"Sound is usually generated in a medium by an electromechanical vibrating structure. The geometrical size and inertia of the structure set the frequency cutoff in the sound-transduction mechanism and, often, different vibrating structures are necessary to cover the whole range from infrasound to ultrasound. An alternative mechanism without any physical movement of the emitter is the thermoacoustic effect, where sound is produced by Joule heating in a conductive material. Here we show that a single thermoacoustic transducer based on a graphene aerogel can emit ultrabroadband sound from infrasound (1 Hz) to ultrasound (20 MHz), with no harmonic distortion. Since conventional acoustic transducers are frequency band limited due to their transduction mechanism, ultrabroadband graphene aerogels may offer a valid alternative to conventional hi-fi loudspeakers, and infrasound and ultrasound transducers.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevApplied.14.024022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Sound is usually generated in a medium by an electromechanical vibrating structure. The geometrical size and inertia of the structure set the frequency cutoff in the sound-transduction mechanism and, often, different vibrating structures are necessary to cover the whole range from infrasound to ultrasound. An alternative mechanism without any physical movement of the emitter is the thermoacoustic effect, where sound is produced by Joule heating in a conductive material. Here we show that a single thermoacoustic transducer based on a graphene aerogel can emit ultrabroadband sound from infrasound (1 Hz) to ultrasound (20 MHz), with no harmonic distortion. Since conventional acoustic transducers are frequency band limited due to their transduction mechanism, ultrabroadband graphene aerogels may offer a valid alternative to conventional hi-fi loudspeakers, and infrasound and ultrasound transducers.