J. Galindo, Mauricio Alférez, M. Acher, B. Baudry, David Benavides
{"title":"A variability-based testing approach for synthesizing video sequences","authors":"J. Galindo, Mauricio Alférez, M. Acher, B. Baudry, David Benavides","doi":"10.1145/2610384.2610411","DOIUrl":null,"url":null,"abstract":"A key problem when developing video processing software is the difficulty to test different input combinations. In this paper, we present VANE, a variability-based testing approach to derive video sequence variants. The ideas of VANE are i) to encode in a variability model what can vary within a video sequence; ii) to exploit the variability model to generate testable configurations; iii) to synthesize variants of video sequences corresponding to configurations. VANE computes T-wise covering sets while optimizing a function over attributes. Also, we present a preliminary validation of the scalability and practicality of VANE in the context of an industrial project involving the test of video processing algorithms.","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"24 1","pages":"293-303"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2610384.2610411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
A key problem when developing video processing software is the difficulty to test different input combinations. In this paper, we present VANE, a variability-based testing approach to derive video sequence variants. The ideas of VANE are i) to encode in a variability model what can vary within a video sequence; ii) to exploit the variability model to generate testable configurations; iii) to synthesize variants of video sequences corresponding to configurations. VANE computes T-wise covering sets while optimizing a function over attributes. Also, we present a preliminary validation of the scalability and practicality of VANE in the context of an industrial project involving the test of video processing algorithms.