{"title":"Algorithmically deconstructing shot locations as a method for shot quality in hockey","authors":"Devan G. Becker, D. Woolford, C. Dean","doi":"10.1515/jqas-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract Spatial point processes have been successfully used to model the relative efficiency of shot locations for each player in professional basketball games. Those analyses were possible because each player makes enough baskets to reliably fit a point process model. Goals in hockey are rare enough that a point process cannot be fit to each player’s goal locations, so novel techniques are needed to obtain measures of shot efficiency for each player. A Log-Gaussian Cox Process (LGCP) is used to model all shot locations, including goals, of each NHL player who took at least 500 shots during the 2011–2018 seasons. Each player’s LGCP surface is treated as an image and these images are then used in an unsupervised statistical learning algorithm that decomposes the pictures into a linear combination of spatial basis functions. The coefficients of these basis functions are shown to be a very useful tool to compare players. To incorporate goals, the locations of all shots that resulted in a goal are treated as a “perfect player” and used in the same algorithm (goals are further split into perfect forwards, perfect centres and perfect defence). These perfect players are compared to other players as a measure of shot efficiency. This analysis provides a map of common shooting locations, identifies regions with the most goals relative to the number of shots and demonstrates how each player’s shot location differs from scoring locations.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"43 1","pages":"107 - 115"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Spatial point processes have been successfully used to model the relative efficiency of shot locations for each player in professional basketball games. Those analyses were possible because each player makes enough baskets to reliably fit a point process model. Goals in hockey are rare enough that a point process cannot be fit to each player’s goal locations, so novel techniques are needed to obtain measures of shot efficiency for each player. A Log-Gaussian Cox Process (LGCP) is used to model all shot locations, including goals, of each NHL player who took at least 500 shots during the 2011–2018 seasons. Each player’s LGCP surface is treated as an image and these images are then used in an unsupervised statistical learning algorithm that decomposes the pictures into a linear combination of spatial basis functions. The coefficients of these basis functions are shown to be a very useful tool to compare players. To incorporate goals, the locations of all shots that resulted in a goal are treated as a “perfect player” and used in the same algorithm (goals are further split into perfect forwards, perfect centres and perfect defence). These perfect players are compared to other players as a measure of shot efficiency. This analysis provides a map of common shooting locations, identifies regions with the most goals relative to the number of shots and demonstrates how each player’s shot location differs from scoring locations.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.