Code2graph: Automatic Generation of Static Call Graphs for Python Source Code

Gharib Gharibi, Rashmi Tripathi, Yugyung Lee
{"title":"Code2graph: Automatic Generation of Static Call Graphs for Python Source Code","authors":"Gharib Gharibi, Rashmi Tripathi, Yugyung Lee","doi":"10.1145/3238147.3240484","DOIUrl":null,"url":null,"abstract":"A static call graph is an imperative prerequisite used in most interprocedural analyses and software comprehension tools. However, there is a lack of software tools that can automatically analyze the Python source-code and construct its static call graph. In this paper, we introduce a prototype Python tool, named code2graph, which automates the tasks of (1) analyzing the Python source-code and extracting its structure, (2) constructing static call graphs from the source code, and (3) generating a similarity matrix of all possible execution paths in the system. Our goal is twofold: First, assist the developers in understanding the overall structure of the system. Second, provide a stepping stone for further research that can utilize the tool in software searching and similarity detection applications. For example, clustering the execution paths into a logical workflow of the system would be applied to automate specific software tasks. Code2graph has been successfully used to generate static call graphs and similarity matrices of the paths for three popular open-source Deep Learning projects (TensorFlow, Keras, PyTorch). A tool demo is available at https://youtu.be/ecctePpcAKU.","PeriodicalId":6622,"journal":{"name":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"63 1","pages":"880-883"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3238147.3240484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

A static call graph is an imperative prerequisite used in most interprocedural analyses and software comprehension tools. However, there is a lack of software tools that can automatically analyze the Python source-code and construct its static call graph. In this paper, we introduce a prototype Python tool, named code2graph, which automates the tasks of (1) analyzing the Python source-code and extracting its structure, (2) constructing static call graphs from the source code, and (3) generating a similarity matrix of all possible execution paths in the system. Our goal is twofold: First, assist the developers in understanding the overall structure of the system. Second, provide a stepping stone for further research that can utilize the tool in software searching and similarity detection applications. For example, clustering the execution paths into a logical workflow of the system would be applied to automate specific software tasks. Code2graph has been successfully used to generate static call graphs and similarity matrices of the paths for three popular open-source Deep Learning projects (TensorFlow, Keras, PyTorch). A tool demo is available at https://youtu.be/ecctePpcAKU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动生成静态调用图的Python源代码
静态调用图是大多数过程间分析和软件理解工具中必不可少的先决条件。然而,缺乏能够自动分析Python源代码并构建其静态调用图的软件工具。在本文中,我们介绍了一个原型Python工具code2graph,它可以自动完成以下任务:(1)分析Python源代码并提取其结构;(2)从源代码构建静态调用图;(3)生成系统中所有可能执行路径的相似矩阵。我们的目标是双重的:首先,帮助开发人员理解系统的整体结构。其次,为进一步的研究提供一个跳板,可以利用该工具在软件搜索和相似度检测应用中。例如,将执行路径集群到系统的逻辑工作流中可以应用于自动化特定的软件任务。Code2graph已经成功地用于为三个流行的开源深度学习项目(TensorFlow, Keras, PyTorch)生成静态调用图和路径的相似矩阵。该工具的演示可在https://youtu.be/ecctePpcAKU上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatically Testing Implementations of Numerical Abstract Domains Self-Protection of Android Systems from Inter-component Communication Attacks Characterizing the Natural Language Descriptions in Software Logging Statements DroidMate-2: A Platform for Android Test Generation CPA-SymExec: Efficient Symbolic Execution in CPAchecker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1