The Comeback of Reed Solomon Codes

Nir Drucker, S. Gueron, V. Krasnov
{"title":"The Comeback of Reed Solomon Codes","authors":"Nir Drucker, S. Gueron, V. Krasnov","doi":"10.1109/ARITH.2018.8464690","DOIUrl":null,"url":null,"abstract":"Distributed storage systems utilize erasure codes to reduce their storage costs while efficiently handling failures. Many of these codes (e. g., Reed-Solomon (RS) codes) rely on Galois Field (GF) arithmetic, which is considered to be fast when the field characteristic is 2. Nevertheless, some developments in the field of erasure codes offer new efficient techniques that require mostly XOR operations, and are thus faster than GF operations. Recently, Intel announced [1] that its future architecture (codename “Ice Lake”) will introduce new set of instructions called Galois Field New Instruction (GF-NI). These instructions allow software flows to perform vector and matrix multiplications over GF (28) on the wide registers that are available on the AVX512 architectures. In this paper, we explain the functionality of these instructions, and demonstrate their usage for some fast computations in GF(28). We also use the Intel® Intelligent Storage Acceleration Library (ISA-L) in order to estimate potential future improvement for erasure codes that are based on RS codes. Our results predict $\\approx 1.4\\mathrm{x}$ speedup for vectorized multiplication, and 1.83x speedup for the actual encoding.","PeriodicalId":6576,"journal":{"name":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","volume":"56 1","pages":"125-129"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2018.8464690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Distributed storage systems utilize erasure codes to reduce their storage costs while efficiently handling failures. Many of these codes (e. g., Reed-Solomon (RS) codes) rely on Galois Field (GF) arithmetic, which is considered to be fast when the field characteristic is 2. Nevertheless, some developments in the field of erasure codes offer new efficient techniques that require mostly XOR operations, and are thus faster than GF operations. Recently, Intel announced [1] that its future architecture (codename “Ice Lake”) will introduce new set of instructions called Galois Field New Instruction (GF-NI). These instructions allow software flows to perform vector and matrix multiplications over GF (28) on the wide registers that are available on the AVX512 architectures. In this paper, we explain the functionality of these instructions, and demonstrate their usage for some fast computations in GF(28). We also use the Intel® Intelligent Storage Acceleration Library (ISA-L) in order to estimate potential future improvement for erasure codes that are based on RS codes. Our results predict $\approx 1.4\mathrm{x}$ speedup for vectorized multiplication, and 1.83x speedup for the actual encoding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
里德·所罗门密码的回归
分布式存储系统利用纠删码来降低存储成本,同时有效地处理故障。许多这些码(如里德-所罗门码(RS))依赖于伽罗瓦场(GF)算法,当场特征为2时,该算法被认为是快速的。然而,擦除码领域的一些发展提供了新的高效技术,这些技术主要需要异或操作,因此比GF操作更快。近日,英特尔宣布其未来架构(代号“冰湖”)将引入一套名为伽罗瓦场新指令(GF-NI)的新指令。这些指令允许软件流在AVX512架构上可用的宽寄存器上对GF(28)执行向量和矩阵乘法。在本文中,我们解释了这些指令的功能,并演示了它们在GF(28)中的一些快速计算中的使用。我们还使用英特尔®智能存储加速库(ISA-L)来估计基于RS码的擦除码的潜在未来改进。我们的结果预测,向量化乘法的加速大约为1.4 mathm {x}$,实际编码的加速为1.83倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Density and Performance Multiplication for FPGA On Various Ways to Split a Floating-Point Number Flexpoint: Predictive Numerics for Deep Learning Augmented Arithmetic Operations Proposed for IEEE-754 2018 A New Variant of the Barrett Algorithm Applied to Quotient Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1