Multi-step Self-attention Network for Cross-modal Retrieval Based on a Limited Text Space

Zheng Yu, Wenmin Wang, Ge Li
{"title":"Multi-step Self-attention Network for Cross-modal Retrieval Based on a Limited Text Space","authors":"Zheng Yu, Wenmin Wang, Ge Li","doi":"10.1109/ICASSP.2019.8682424","DOIUrl":null,"url":null,"abstract":"Cross-modal retrieval has been recently proposed to find an appropriate subspace where the similarity among different modalities, such as image and text, can be directly measured. In this paper, we propose Multi-step Self-Attention Network (MSAN) to perform cross-modal retrieval in a limited text space with multiple attention steps, that can selectively attend to partial shared information at each step and aggregate useful information over multiple steps to measure the final similarity. In order to achieve better retrieval results with faster training speed, we introduce global prior knowledge as the global reference information. Extensive experiments on Flickr30K and MSCOCO, show that MSAN achieves new state-of-the-art results in accuracy for cross-modal retrieval.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"16 1","pages":"2082-2086"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-modal retrieval has been recently proposed to find an appropriate subspace where the similarity among different modalities, such as image and text, can be directly measured. In this paper, we propose Multi-step Self-Attention Network (MSAN) to perform cross-modal retrieval in a limited text space with multiple attention steps, that can selectively attend to partial shared information at each step and aggregate useful information over multiple steps to measure the final similarity. In order to achieve better retrieval results with faster training speed, we introduce global prior knowledge as the global reference information. Extensive experiments on Flickr30K and MSCOCO, show that MSAN achieves new state-of-the-art results in accuracy for cross-modal retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有限文本空间的跨模态检索多步自关注网络
跨模态检索最近被提出,用来寻找一个合适的子空间来直接测量不同模态(如图像和文本)之间的相似性。在本文中,我们提出了多步自注意网络(Multi-step Self-Attention Network, MSAN),在有限的文本空间中使用多个注意步骤进行跨模态检索,该网络可以在每一步选择性地关注部分共享信息,并在多个步骤中聚合有用信息以度量最终的相似性。为了以更快的训练速度获得更好的检索结果,我们引入全局先验知识作为全局参考信息。在Flickr30K和MSCOCO上进行的大量实验表明,MSAN在跨模态检索的准确性方面取得了新的最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1