{"title":"Massively parallelized Quasi-Monte Carlo financial simulation on a FPGA supercomputer","authors":"Xiang Tian, K. Benkrid","doi":"10.1109/HPRCTA.2008.4745684","DOIUrl":null,"url":null,"abstract":"Quasi-Monte Carlo simulation is a specialized Monte Carlo method which uses quasi-random, or low-discrepancy, numbers as the stochastic parameters. In many applications, this method has proved advantageous compared to the traditional Monte Carlo simulation method, which uses pseudo-random numbers, as it converges relatively quickly, and with a better level of accuracy. We implemented a massively parallelized Quasi-Monte Carlo simulation engine on a FPGA-based supercomputer, called Maxwell, and developed at the University of Edinburgh. Maxwell consists of 32 IBM Intel Xeon blades each hosting two Virtex-4 FPGA nodes through PCI-X interface. Real hardware implementation of our FPGA-based quasi-Monte Carlo engine on the Maxwell machine outperforms equivalent software implementations running on the Xeon processors by 3 orders of magnitude, with the speed-up figure scaling linearly with the number of processing nodes. The paper presents the detailed design and implementation of our Quasi-Monte Carlo engine in the context of financial derivatives pricing.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"45 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/HPRCTA.2008.4745684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Quasi-Monte Carlo simulation is a specialized Monte Carlo method which uses quasi-random, or low-discrepancy, numbers as the stochastic parameters. In many applications, this method has proved advantageous compared to the traditional Monte Carlo simulation method, which uses pseudo-random numbers, as it converges relatively quickly, and with a better level of accuracy. We implemented a massively parallelized Quasi-Monte Carlo simulation engine on a FPGA-based supercomputer, called Maxwell, and developed at the University of Edinburgh. Maxwell consists of 32 IBM Intel Xeon blades each hosting two Virtex-4 FPGA nodes through PCI-X interface. Real hardware implementation of our FPGA-based quasi-Monte Carlo engine on the Maxwell machine outperforms equivalent software implementations running on the Xeon processors by 3 orders of magnitude, with the speed-up figure scaling linearly with the number of processing nodes. The paper presents the detailed design and implementation of our Quasi-Monte Carlo engine in the context of financial derivatives pricing.