Massively parallelized Quasi-Monte Carlo financial simulation on a FPGA supercomputer

Xiang Tian, K. Benkrid
{"title":"Massively parallelized Quasi-Monte Carlo financial simulation on a FPGA supercomputer","authors":"Xiang Tian, K. Benkrid","doi":"10.1109/HPRCTA.2008.4745684","DOIUrl":null,"url":null,"abstract":"Quasi-Monte Carlo simulation is a specialized Monte Carlo method which uses quasi-random, or low-discrepancy, numbers as the stochastic parameters. In many applications, this method has proved advantageous compared to the traditional Monte Carlo simulation method, which uses pseudo-random numbers, as it converges relatively quickly, and with a better level of accuracy. We implemented a massively parallelized Quasi-Monte Carlo simulation engine on a FPGA-based supercomputer, called Maxwell, and developed at the University of Edinburgh. Maxwell consists of 32 IBM Intel Xeon blades each hosting two Virtex-4 FPGA nodes through PCI-X interface. Real hardware implementation of our FPGA-based quasi-Monte Carlo engine on the Maxwell machine outperforms equivalent software implementations running on the Xeon processors by 3 orders of magnitude, with the speed-up figure scaling linearly with the number of processing nodes. The paper presents the detailed design and implementation of our Quasi-Monte Carlo engine in the context of financial derivatives pricing.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"45 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/HPRCTA.2008.4745684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Quasi-Monte Carlo simulation is a specialized Monte Carlo method which uses quasi-random, or low-discrepancy, numbers as the stochastic parameters. In many applications, this method has proved advantageous compared to the traditional Monte Carlo simulation method, which uses pseudo-random numbers, as it converges relatively quickly, and with a better level of accuracy. We implemented a massively parallelized Quasi-Monte Carlo simulation engine on a FPGA-based supercomputer, called Maxwell, and developed at the University of Edinburgh. Maxwell consists of 32 IBM Intel Xeon blades each hosting two Virtex-4 FPGA nodes through PCI-X interface. Real hardware implementation of our FPGA-based quasi-Monte Carlo engine on the Maxwell machine outperforms equivalent software implementations running on the Xeon processors by 3 orders of magnitude, with the speed-up figure scaling linearly with the number of processing nodes. The paper presents the detailed design and implementation of our Quasi-Monte Carlo engine in the context of financial derivatives pricing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在FPGA超级计算机上大规模并行准蒙特卡罗金融模拟
准蒙特卡罗模拟是一种专门的蒙特卡罗方法,它使用准随机或低差异的数字作为随机参数。在许多应用中,与使用伪随机数的传统蒙特卡罗模拟方法相比,该方法已被证明具有优势,因为它收敛相对较快,并且具有更好的精度。我们在爱丁堡大学开发的基于fpga的超级计算机Maxwell上实现了一个大规模并行的准蒙特卡罗模拟引擎。Maxwell由32个IBM Intel至强刀片组成,每个刀片通过PCI-X接口承载两个Virtex-4 FPGA节点。我们基于fpga的准蒙特卡罗引擎在Maxwell机器上的实际硬件实现比在Xeon处理器上运行的等效软件实现高出3个数量级,加速图与处理节点的数量呈线性增长。本文介绍了我们的准蒙特卡罗引擎在金融衍生品定价方面的详细设计和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1121
期刊最新文献
The AHP-TOPSIS based DSS for selecting suppliers of information resources A mutual one-time password for online application Impact of Artificial Intelligence in COVID-19 Pandemic: A Comprehensive Review Structure and criteria defining business value in agile software development based on hierarchical analysis A Hybrid Collaborative Filtering Technique for Web Service Recommendation using Contextual Attributes of Web Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1