Evolution and evaluation of biometric systems

D. Gorodnichy
{"title":"Evolution and evaluation of biometric systems","authors":"D. Gorodnichy","doi":"10.1109/CISDA.2009.5356531","DOIUrl":null,"url":null,"abstract":"Biometric systems have evolved significantly over the past years: from single-sample fully-controlled verification matchers to a wide range of multi-sample multi-modal fully-automated person recognition systems working in a diverse range of unconstrained environments and behaviors. The methodology for biometric system evaluation however has remained practically unchanged, still being largely limited to reporting false match and non-match rates only and the tradeoff curves based thereon. Such methodology may no longer be sufficient and appropriate for investigating the performance of state-of-the-art systems. This paper addresses this gap by establishing taxonomy of biometric systems and proposing a baseline methodology that can be applied to the majority of contemporary biometric systems to obtain an all-inclusive description of their performance. In doing that, a novel concept of multi-order performance analysis is introduced and the results obtained from a large-scale iris biometric system examination are presented.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"8 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Biometric systems have evolved significantly over the past years: from single-sample fully-controlled verification matchers to a wide range of multi-sample multi-modal fully-automated person recognition systems working in a diverse range of unconstrained environments and behaviors. The methodology for biometric system evaluation however has remained practically unchanged, still being largely limited to reporting false match and non-match rates only and the tradeoff curves based thereon. Such methodology may no longer be sufficient and appropriate for investigating the performance of state-of-the-art systems. This paper addresses this gap by establishing taxonomy of biometric systems and proposing a baseline methodology that can be applied to the majority of contemporary biometric systems to obtain an all-inclusive description of their performance. In doing that, a novel concept of multi-order performance analysis is introduced and the results obtained from a large-scale iris biometric system examination are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物识别系统的进化与评价
生物识别系统在过去几年中发生了重大变化:从单样本完全控制的验证匹配器到广泛的多样本多模式全自动人员识别系统,可在各种不受约束的环境和行为中工作。然而,生物识别系统评估的方法几乎保持不变,仍然主要限于报告虚假匹配率和非匹配率以及基于此的权衡曲线。这种方法对于调查最先进系统的性能可能不再是充分和适当的。本文通过建立生物识别系统的分类法并提出一种基线方法来解决这一差距,该方法可应用于大多数当代生物识别系统,以获得对其性能的全面描述。在此过程中,引入了一种新的多阶性能分析概念,并给出了大规模虹膜生物识别系统检测的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1